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Abstract. An extensible and configurable processor is a programmable plat-
form offering the possibility to customize the instruction set and/or underlying 
microarchitecture. Efficient application analysis can identify the application pa-
rameters and instruction extensions that would influence processor perform-
ance. An application characterization flow is presented and demonstrated on the 
Wavelet/Scalar Quantization image compression application. In this context, 
novel application metrics are identified as the percentage cover, maximum cy-
cle gain for each basic block and candidate-induced application speedup due to 
possible complex instructions. Furthermore, evaluating the instruction candi-
dates during application analysis is proposed in order to establish a link with 
subsequent design space exploration steps. 

1 Introduction 

Embedded processors suitable for consumer applications, present interesting architec-
tural refinements, in order to support power-hungry algorithms e.g. for high band-
width wireless communications or video compression and decompression [1]. The 
portability of these systems makes energy consumption a critical design concern. For 
successfully implementing software applications on domain-specific processors under 
tight time-to-market constraints, requirements of high flexibility and programmability 
have also to be met.  

The challenge of delivering the optimum balance between efficiency and flexibility 
can be met with the utilization of customizable processors. Most commercial offer-
ings fall in the category of configurable and extensible processors [2],[3]. Configura-
bility lies in either a) setting the configuration record for the core (regarding different 
cache sizes, multiplier throughput and technology specific module generation) or b) 
allowing modifications on the original microarchitecture template. In the first case, 
the end user selects the synthesis-time values for certain parameters of the processor 
core [4]. The second case requires that the basic architecture of the core is modifiable. 
For instance, the flexible pipeline stage model employing local control in [5] enables 
altering the pipeline depth of the processor. Extensibility of a processor comes in 
modifying the instruction set architecture by adding single-, multi-cycle or pipelined 
versions of complex instructions. This may require the introduction of custom units to 
the execution stage of the processor pipeline and this should be accounted in the ar-



chitecture template of the processor. The instruction extensions are generated either 
automatically or manually from a self-contained representation of the application 
code, assuming a structural and instruction set model of the processor [6].  

Characterizing the application workload is a fundamental step in microprocessor 
design, since based on this analysis, the processor designer can decide the appropriate 
configuration and the required instruction extensions of a customizable core for 
achieving an advantageous performance-flexibility tradeoff. In this paper, an ap-
proach to application analysis is presented for extracting application parameters. The 
framework is based on the freely available SUIF/Machine SUIF (MachSUIF) com-
piler infrastructure [7]. Opposed to previous approaches, complex instruction candi-
dates are identified at the stage of application analysis, since such information can be 
used for pruning the design space of possible instructions in an Application-Specific 
Instruction set Processor (ASIP) design flow. Static and dynamic characteristics of the 
application are also extracted and their impact on candidate identification is investi-
gated. The metrics of percentage cover, maximum basic block cycle gain and candi-
date-induced application speedup that quantify the impact of including specific com-
plex instructions are given. Overall, it is argued that generating an initial set of 
instruction candidates should be an integrated step of the application characterization 
flow to guide subsequent design space exploration steps.  

The rest of this paper is organized as follows. The related work in application 
analysis and candidate instruction (template) identification is summarized in Section 
2. Each step of the application characterization flow is described in Section 3 along 
with the use of existing and the associated in-house tools we have developed. Section 
4 discusses the application of the proposed approach on the Wavelet/Scalar Quantiza-
tion (WSQ) image compression algorithm and the corresponding results. Finally, Sec-
tion 5 summarizes the paper.   

2 Related Work 

An important issue in domain-specific processor design is the task of application 
analysis extracting both static and dynamic metrics for the examined applications.  
Although important in ASIP synthesis, the effect of introducing candidate instructions 
to accelerate processor performance on a given application set is not adequately ex-
amined in context of application analysis in the vast majority of related work.   

In [8] both the application and a specification of the processor are input to an esti-
mation framework based on SUIF. A number of parameters characterizing the appli-
cation are extracted: the average basic block size, number of multiply-accumulate op-
erations, ratio of address to data computation instructions, ratio of I/O to total 
instructions, register liveness, and degree of instruction-level parallelism. Compared 
to [8], our approach searches for all candidate instructions by identifying fully-
connected subgraphs in the DFG of each basic block, instead of restricting the search 
to a specific complex instruction type. Also, their tool has been designed for processor 
selection and not to assist ASIP synthesis, which explains the fact of using coarse pa-
rameters extracted from the instruction mix. These are intended as thresholds for se-



lecting or rejecting a specific processor while our method performs the analysis in a 
much finer level.  

A performance estimator using a parameterized architecture model has been devel-
oped in [9]. While the work presented is significant, the method has been constructed 
with a specific processor type in mind. E.g. the assumed addressing modes are spe-
cific to DSP processors. Our method can identify non-DSP specific complex address-
ing schemes, as shifter-based addressing modes similar to those of the ARM7 proces-
sor. 

Multimedia benchmark suites have been presented in [10],[11] along with their 
characterization profile. In [11] the popular MediaBench suite is introduced, charac-
terized with metrics suitable for general-purpose processors. The benchmark suite in 
[10] is comprehensive with a thorough study, however also assuming a GPP template. 
Again, guidelines to finding the appropriate extension instructions suitable to multi-
media-enhanced GPPs are not provided. 

3 The Proposed Approach for Application Analysis and 
Characterization 

It is often at early stages in processor design, that the compilers and simulators for the 
entire range of applicable processor architectures one needs to consider, are not avail-
able [8]. In order for the application characterization results to be useful to the spec-
trum of evaluated microarchitectures, a common estimation platform is required. We 
propose using the MachSUIF intermediate representation (IR) for this purpose. In 
MachSUIF, the IR description uses the SUIF virtual machine instruction set 
(SUIFvm), which assumes that the underlying machine is a generic RISC, not biased 
towards any existing architecture. 

In this case, the application is decomposed into its IR consisting of operations with 
minimal complexity, best known as primitive or atomic instructions. It is possible to 
organize the IR description of the application into Control Data Flow Graphs 
(CDFGs) with primitive instructions as nodes and edges denoting control and data 
dependencies. In MachSUIF, the executability of the original C program is retained at 
the level of the SUIFvm instruction set. The corresponding SUIFvm code consists the 
executable intermediate representation [12] of the benchmarked program. Dynamic 
characterization can be performed on the host machine by executing the resulting C 
program, generated by translating the SUIFvm back to C code. 

The proposed application characterization flow is shown in Figure 1. Shaded 
blocks on the diagram distinguish our in-house tools from the available passes of the 
infrastructure. In the remaining paragraphs of this section, we detail the steps of the 
application characterization procedure. 

In Step 1, the input C code for the application is passed through the c2s pass of the 
SUIF frontend. In this stage, the application is preprocessed and its SUIF representa-
tion is emitted. In the second step, do_lower, several machine-independent transfor-
mations are performed as dismantling of loop and conditional statements to low-level 
operations. The resulting description is termed as lower SUIF in contrast to higher 



SUIF generated by c2s. Step 3 is needed to translate the lower SUIF code into the 
SUIFvm representation. For this task, the s2m compiler pass is used.  

The IR code has not been scheduled and has not passed through register allocation, 
which is important so that false dependencies within the data flow graphs of each ba-
sic block are not created [13]. Step 4 performs architecture-independent optimizations 
on the IR, such as a) peephole optimization, b) constant propagation, c) dead code 
elimination, and if decided, d) common subexpression elimination (CSE) to construct 
the optimized SUIFvm description. 
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Fig. 1. The proposed application analysis and characterization flow 

Peephole optimization suppresses redundant move operations and is used to re-
move unnecessary type casting (CVT) operations that MachSUIF has the tendency to 
produce after the application of an active pass. The usefulness of CSE depends on the 
algorithm applied for complex instruction generation. Specifically, if overlapped tem-
plates are permitted during instruction generation, CSE will not prohibit the identifi-
cation of any beneficial candidate. However, if a faster algorithm is used that only al-
lows orthogonal covers, some opportunities will be missed. Assume a basic block 



with two instances of the same subexpression, e.g. a subgraph comprised of two 
primitive operations, placed in the core of two different single-cycle complex instruc-
tions consisting of three and four primitives respectively. If the second subexpression 
is eliminated, then the second instruction candidate could only consist of two primi-
tives.  

Finally, during Step 5, specific static and dynamic metrics are gathered. The corre-
sponding analysis passes accept SUIFvm in CFG form.  

The dagconstruct pass parses each node in the CFG and constructs the correspond-
ing CDFG. Note that instructions involving memory operands (as in CISC-like ma-
chines) require additions to some libraries of the infrastructure. In this case, the dag-
construct pass should be updated to reflect these changes introduced to the suifvm 
library. 

A pass for generating the static instruction mix, instrmix, has also been developed. 
By using the execution frequencies for the basic blocks of the application, the dy-
namic instruction mix can be easily calculated. For calculating the execution frequen-
cies, the SUIFvm code is translated to single-assignment style C using the m2c pass. 
Pass halt_svm is used to instrument the C code by adding counters at the start of each 
basic block. 

The liveanalysis pass is based on the cfa library and calculates the number and 
names of registers that are alive at basic block boundaries. The corresponding results 
help the designer decide the register file size. 

4 Application analysis for the Wavelet/Scalar Quantization image 
compression algorithm 

The case study application is based on a wavelet image compression algorithm [14] 
and is part of the Adaptive Computing Benchmarks [15], which are used to evaluate 
specific characteristics of reconfigurable architectures. Reportedly, the selected 
benchmark is used to stress reconfigurability by splitting execution time among sev-
eral kernels. A compliant implementation of the WSQ algorithm is required to per-
form four standard steps: wavelet transform, quantization, run-length encoding and 
entropy coding (for the encoder part). The entropy encoding stage is realized with a 
Huffman encoder. In our paper, the application analysis framework is used to extract 
characteristics for both the encoding and decoding algorithms. 

4.1 Instruction mix 

The dynamic instruction mix provides a classification of the application instructions 
into types based on the functional units used. Instructions are divided into integer and 
floating-point, while each of those has distinct subtypes: load and store, arithmetic, 
logical, shift, multiply, division, unconditional and conditional branch, call/return and 
remaining instructions. Figure 2 shows the instruction mix statistics for the compress 
and decompress applications, which correspond to the WSQ encoder and decoder, re-
spectively. Note that WSQ is a pure integer application. 
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Fig. 2. Instruction mix statistics for the WSQ algorithm 

It is clear that arithmetic operations dominate the instruction mix of the applica-
tions. Also, decompress has higher computational complexity than compress since it 
requires higher amount of arithmetic and load instructions. The ratio of branches to 
the total instructions is very small (9.8%) which means that higher execution frequen-
cies are encountered for relatively large basic blocks. This conclusion is supported by 
the results of Section 4.4. 

4.2 Average basic block size 

The basic block sizes are easily calculated simultaneously to the static instruction 
mix. It is found that 3.98 and 4.48 instructions consist the average basic block for the 
compress and decompress applications, respectively. At a first glance, this result does 
not leave much room for performance benefits by exploiting complex instruction can-
didates within the same basic block. However, as it will be shown, heavily executed 
portions of the code comprise of rather large basic blocks.  

4.3 Register liveness analysis 

It is found that decompress has lower register pressure with a maximum of 8 saved 
registers while compress requires 11 saved registers. These results constitute a lower 
bound on the required local storage resources, more specifically the number of alloc-
able registers of the architecture, for the WSQ algorithm. 

4.4 Basic block frequencies 

Figure 3 indicates the execution frequencies and sizes for the most heavily executed 
basic blocks for compress and decompress. Each basic block is assigned a unique 
name of the form: <file_name>.<function_name>.<basic_block_number>. 
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Fig. 3. Execution frequencies and sizes for the heavily executed basic blocks 

It is evident from Figure 3 that there exists space for achieving speedup in the per-
formance critical basic blocks since their size is significantly above average. 

4.5 Data flow graph analysis for identifying candidate instruction extensions 

The dagconstruct pass referred in the beginning of this section, generates DFGs for 
each basic block. Then, fully-connected subgraphs of these DFGs are identified as po-
tential complex instructions. A measure of success for the selection of complex in-
structions using orthogonal covers is given by the percentage cover factor determined 
by the proportion of the number of instructions after selection to the number of in-
structions prior selection. A speedup factor, maximum basic block cycle gain, is also 
introduced and is calculated as the product of the maximum performance gain in cy-
cles (assuming no data hazards and spills to memory) with the execution frequency of 
the specified basic block. An estimate on the performance impact of selecting a set of 
isomorphic patterns is given by the candidate-induced application speedup metric de-
fined as the application speedup due to selecting the complex instruction. At this 
point, calculating the latter metric is not automated, and for this reason it is evaluated 
on the performance-critical basic blocks of the application. Since only 10 basic blocks 
incorporate the 85.3% of the instructions for compress and 8 basic blocks the 97.3% 
of the instructions for decompress, the extracted results are valid.  

Table 1 shows the percentage cover factor and maximum cycle gain for the per-
formance-critical basic blocks. In columns 2 and 3, the number of instructions prior 
and after complex instruction matching is given. The percentage cover and maximum 



gain values are given in columns 4 and 5 respectively. The average percentage cover 
is 83.2%. 

Table 1. Template selection results for the performance-critical basic blocks 

Basic block ID # Instr. 
(prior select.) 

# Instr. 
(after select.) 

% cover Maximum 
cycle gain 

compress.block_quantize.5 7 3 85.7 1048576 
compress.block_quantize.17 7 3 85.7 1048576 
compress.block_quantize.18 5 2 80.0 786432 
compress.block_quantize.19 10 3 70.0 1806336 
compress.block_RLE_encode.6 8 3 100.0 1290285 
compress.block_RLE_encode.7 7 5 57.1 516096 
compress.entropy_encode.3 7 4 57.1 786438 
compress.fcdf22.3 24 9 87.5 5160960 
compress.fcdf22.6 47 15 91.5 10895360 
compress.fcdf22.9 23 9 82.6 4816896 
decompress.block_dequantize.9 10 5 70.0 983040 
decompress.block_dequantize.16 10 4 100.0 393216 
decompress.block_dequantize.18 14 4 100.0 655360 
decompress.hufdec.2 6 2 100.0 8000004 
decompress.hufdec.3 20 11 70.0 18000000 
decompress.bcdf22.3 23 9 82.6 4816896 
decompress.bcdf22.6 42 13 92.9 9873920 
decompress.bcdf22.9 25 10 84.0 5160960 

 
In Table 2, candidate-induced application speedups are given in columns 2, 3 for 

the 23 unique (non-isomorphic) complex instructions that were identified. Estimates 
of the implementation details for these instructions are shown in column 4. 

Table 2. Candidate-induced speedups for the compress and decompress applications 

Application name compress decompress  

Candidate instruction % candidate-induced 
speedup 

% candidate-induced 
speedup 

Possible 
implementation 

mla 3.43 0.68 Multi-cycle/pipelined 
lod_add_lsl 26.65 17.07 Single-cycle 
stri_lsl 1.70 0.91 Single-cycle 
bne_imm 0.57 0.08 Single-cycle 
beq_inc 1.14 n.a. Single-cycle 
stri_add 1.73 n.a. Single-cycle 
mul_lsl 0.76 0.40 Multi-cycle/pipelined 
str_lsl 15.85 5.72 Single-cycle 
lsl_mla 1.51 n.a. Multi-cycle/pipelined 
add_sub 0.75 n.a. Single-cycle 
lod_lsl_inc 3.00 1.58 Single-cycle 



lod_lsl_dec 2.25 n.a. Single-cycle 
add_asr_add 1.50 n.a. Single-cycle 
add_inc_mul 1.51 0.80 Multi-cycle/pipelined 
bge_imm n.a. 2.32 Multi-cycle/pipelined 
ldc_and_sl n.a. 2.32 Single-cycle 
and_sli n.a. 4.63 Single-cycle 
lsl_inc n.a. 2.32 Single-cycle 
str_addi n.a. 4.63 Single-cycle 
add_asr_sub n.a. 0.79 Single-cycle 
add_add n.a. 0.39 Single-cycle 
mul_add_lsl n.a. 1.18 Multi-cycle/pipelined 
lod_lsrv n.a. 6.95 Single-cycle 

 
For both applications, load and store instructions as lod_add_lsl, str_add_lsl and 

lod_lsrv implementing shifter-based addressing modes provide the most significant 
speedup while not requiring any change to the memory access scheme. The genera-
tion of such specialized addressing modes although currently disallowed in [13], 
could be safely accounted in their DFG explorer.  

Figure 4 shows a portion of the generated templates. A restriction of maximum 3 
input and 1 output register operands has been applied to encompass for single register 
file limitations that apply to a generic RISC. The majority of these templates, for ex-
ample (i), (ii), (iv), could be implemented as single-cycle instructions since 3 or more 
arithmetic (excluding multiplication and division), logical or shift-by-immediate op-
erations would fit in a single cycle [13]. Complex instruction (iii) incorporates the 
multiply operation which almost certainly affects the processor cycle time. A multi-
cycle or pipelined realization for this instruction is worthy investigating. Multi-cycle 
instructions may be acceptable even though the processing throughput against using 
their primitive instruction sequence may not be improved, since power consumption 
related to instruction fetch is significantly reduced.  

It is possible that instruction templates can be merged into superset instructions 
that would be served on the same hardware. For example, templates (i), (ii), and (iv), 
make use of up to 2 adder/subtractors and 1 shifter, so that assuming appropriate con-
trol, a single instruction for these could be implemented. If a load/store operation is 
also part of the instruction, it must be performed on a different pipeline stage. 
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Fig. 4. Candidate instruction examples 



5 Conclusions 

In this paper, an application analysis flow is proposed for evaluating the characteris-
tics of applications running on configurable processor platforms. For this reason, an 
open-source compiler infrastructure is utilized to develop our in-house tools. Novel 
application parameters are introduced in the scope of application characterization as 
the percentage cover, maximum basic block cycle and candidate-induced application 
speedup due to the introduction of instruction extensions. An initial set of complex in-
structions is also generated in order to be used as a starting point in design space ex-
ploration iterations. To show the potential of the presented approach, the Wave-
let/Scalar Quantization image compression application is used as a case study. 
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