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Elimination of overhead operations in complex
loop structures for embedded microprocessors

Nikolaos Kavvadias, and Spiridon Nikolaidis, Member, IEEE

Abstract—Looping operations impose a significant bottleneck to achieving better computational efficiency for embedded applications.
In this paper, a novel zero-overhead loop controller (ZOLC) supporting arbitrary loop structures with multiple-entry and multiple-exit
nodes is described and utilized to enhance embedded RISC processors. A graph formalism is introduced for representing the loop
structure of application programs, which can assist in ZOLC code synthesis. Also, a portable description of a ZOLC component is given
in detail, which can be exploited in the scope of RTL synthesis for enabling its utilization. This description is designed to be easily
retargetable to single-issue RISC processors, requiring only minimal effort for this task.

The ZOLC unit has been incorporated to different RISC processor models and research ASIPs at different abstraction levels (RTL
VHDL and ArchC) to provide effective means for low-overhead looping without negative impact to the processor cycle time. Average
performance improvements of 25.5% and 44% are feasible for a set of kernel benchmarks on an embedded RISC and an application-
specific processor, respectively. A corresponding 10% speedup is achieved on the same RISC for a subset of MiBench applications,
not necessarily featuring the examined performance-critical kernels.

Index Terms—Microprocessors, Control design, Pipeline processors, Optimization, Real-time and embedded systems, Hardware
description languages.

+

INTRODUCTION

However, the proposed solutions are focused on

RECENT embedded microprocessors are required to
execute data-intensive workloads like video en-
coding/decoding with a favorable power/performance
tradeoff. Last years, the respective market is dominated
by new 32-bit RISC architectures (ARM [1], MIPS32 [2]),
and embedded DSPs as the Motorola 56300 [3], ST120 [4],
and TMS320C54x featuring architectural and power con-
sumption characteristics suitable to portable platforms
(mobile phones, palmtop computers, etc). Continuously
evolving embedded RISC families provide among others
deeper pipelines, compressed instruction sets and sup-
port for subword parallelism to increase performance.
At the DSP end, architectures involve even more special-
ized characteristics suitable to data-dominated domains
such as media processing and OFDM radio, where the
most performance-critical computations occur in various
forms of nested loops. Following this trend, modern
DSPs provide better means for the execution of loops,
by surpassing the significant overhead of the loop over-
head instruction pattern which consists of the required
instructions to initiate a new iteration of the loop.
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canonical loops met in typical DSP kernels. A disad-
vantage of most DSPs in the market is that they are
only capable of handling perfect fully-nested structures
consisting of single-entry static loops [5]. Configurable
processors as ARCTangent-A4 [6] and Xtensa-LX [7]
are even more restrictive since they incorporate zero-
overhead mechanisms for single e.g. innermost loops
only. In these cases, a specific processor template is
assumed to which alternate control-flow mechanisms
cannot be added. Some recent efforts regard the hard-
ware design of specialized units for eliminating loop
overheads, as the single-cycle multiple-index update
unit [8]. A relevant software solution, loop unrolling,
is a compiler optimization technique that removes the
overhead of short software loops with a small number
of iterations [5], however not always applicable due to
conditional control flow at certain nesting levels in the
loop body and loop bounds unknown at compile time.

In this work, an architectural solution for zero-
overhead loop control (ZOLC) is presented. This solution
faces the problem of loop overhead instructions in its
general form achieving the optimum performance gains.
The proposed ZOLC unit is used at the instruction
fetch stage to eliminate the loop overheads and can be
applied to arbitrarily complex loop structures (which
can comprise of combinations of natural and irreducible
loops with multiple-entry and multiple-exit points). A
portable specification of a ZOLC unit is also provided,
which can be utilized for the automatic generation of the
aforementioned enhancements to different embedded
processors. In addition, a region-based task control-flow
formalism for software synthesis of ZOLC initialization
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and configuration is given, and a practical compilation
flow for ZOLC code generation has been implemented
based on open-source tools. For proof-of-concept, the
unit has been incorporated to various RISC processors:
XiRisc [9], a 32-bit configurable microprocessor, distrib-
uted as VHDL softcore, as well as to ADL (architecture
description language) models of other processors (MIPS
R3000 for example).

The remainder of this paper is organized as follows.
Section 2 overviews previous research regarding the
elimination of looping operations in embedded appli-
cations. In Section 3, the notion of a data processing
task control flow graph (TCFG) for representing loop-
intensive applications is explained. A set of motivating
examples is unfolded in Section 4, each of them featuring
a realistic case that the ZOLC approach would prove
beneficial. The architectural template, the implementa-
tion details and a portable model of the ZOLC unit are
presented in Section 5. Software and hardware integra-
tion issues for targeting ZOLC-aware processors are the
subject of Section 6. In Section 7, performance results
on different RISC processor configurations are discussed
with focus on the case of XiRisc. Finally, Section 8
summarizes the paper.

2 RELATED WORK

In recent literature, looping cycle overheads are con-
fronted by using branch-increment/ decrement instruc-
tions, zero-overhead loops or customized units for more
complex loop nests [3], [4], [8], [10], [11]. These ap-
proaches are encountered in both academic [9], [12], and
commercial processors and DSPs [3], [4], [6], [7]. For
the XiRisc processor [9], branch-decrement instructions
can be configured prior synthesis. Kuulusa et al [12]
presented a DSP core supporting a configurable number
of hardware looping units, which can handle the case
of perfect loop nests with fixed iteration counts. The
DSP56300 [3] supports seven levels of nesting using a
system stack. There is a 5-cycle overhead for preparing
a loop for this type of hardware control, which may
be important for small number of iterations or for lin-
ear loops placed at a deeper nest level. In our work
such overheads are eliminated since ZOLC initialization
occurs outside of loop nests. Lee et al [11] provide
software tool support to zero-overhead looping on the
TMS320C54x DSP in the form of a loop-specific compiler
pass. The corresponding pass is introduced to the gcc
frontend prior to the actual intermediate representation
(IR) generation. Notably, extensive transformations are
required to derive the canonical form for nests consisting
of single-entry loops [5].

For the majority of DSP architectures, non-perfectly
nested loops are not generally supported, while irre-
ducible control-flow regions (loops with multiple entries
due to explicit control transfers) are not detectable by
natural loop analysis and their conversion to reducible
regions can be costly in terms of code size. It has been

proved recently [13] that no node splitting technique can
avoid the exponential blowup in code size for converting
an irreducible CFG to a reducible one. Also, the latter
techniques [14], [15] can only be found in sophisticated
compilers. Irreducible loops can be produced when com-
piling to C from flowchart specifications, for example
in translating from process description languages like
UML.

Specific compiler optimizations for zero-overhead
looping on DSPs are extensively discussed in [16]. In the
referred paper, the authors regard using a zero overhead
loop buffer (ZOLB, a kind of compiler-managed cache)
for keeping frequently executed program loops without
having to execute loop overhead instructions. In terms of
cycle performance, their aim is comparable to ours. Also,
they acknowledge as well, the importance of having the
compiler automatically exploit potential cases for remov-
ing loop overheads. However, our technique presents the
following differences to the work by Uh et al.: a) ZOLC
can be applied to arbitrarily complex loop structures
while the ZOL buffer regards each loop separately, b) the
ZOLC approach can be applied independent to the ac-
tual local storage of program instructions (on-chip block
RAM instruction memory, cache, or loop buffer) while
their technique requires that loop bodies are copied to
the ZOL buffer.

A typical case of RISC processor adaptation for fully
nestable types of hardware-implemented loops with
fixed number of iterations has been described in [10].
A more aggressive dedicated controller for perfect loop
nests is found in [8]. Its main advantage is that succes-
sive last iterations of nested loops are performed in a sin-
gle cycle. In contrast to our approach, only fully-nested
structures are supported and the area requirements for
handling the loop increment and branching operations
grow proportionally to the considered number of loops.
Also, this unit cannot be efficiently used with any data-
path since a certain parallelism is assumed to perform
several operations per cycle.

In our approach, a ZOLC method that accommo-
dates complex loop structures with multiple-entry and
multiple-exit nodes is introduced and applied on exist-
ing RISC processors. With our method, complex loop
structures are supported, without regard for the compiler
optimization capabilities. The presented method can be
applied to structures with dynamic loops that have
bound values only resolved at run-time. This particular
case cannot be serviced by any of the previously dis-
cussed methods.

3 REPRESENTATION OF LOOP-INTENSIVE AP-
PLICATIONS

The control-flow information of each function in a given
program is captured within its control-flow graph (CFG)
[17], which is a directed graph having vertices repre-
senting the function’s basic blocks and edges denoting
the direction of control-flow. For the task of graph-based
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code generation, the control-data flow graph (CDFG)
of the application will be processed, which consists of
the CFG with its nodes expanded to their constituent
instructions. In order to let the ZOLC engine execute
looping operations at the background, it is required for
the compiler to perform the following tasks: a) remove
the loop overhead instructions from the original CDFG,
b) generate instructions for initializing the ZOLC storage
resources and c) insert instructions for dynamic updates
of loop bound and stride values, and handle dynamic
control flow decisions occuring at outermost if-then-
else constructs. To determine the parameter values of
the optimal ZOLC configuration (number of loops, and
maximum entries/exits per loop) under area constraints,
a design space exploration procedure is imposed, with
inevitable iterations to evaluate these alternatives. To
evaluate a specific configuration, the computational com-
plexity associated with performing all the steps from a)
to c) at the CDFG level can be reduced by performing
b) and ¢) on a more convenient graph representation of
the application program.

This representation should only model the control
transfer expressions (C'T E's) among portions of the code
situated at loop boundaries. The instruction lists that
comprise each of these code segments are the Data-
Processing Tasks (DPTs) of the algorithm. The CTEs
model abstract control operations. In our case, CTEs
either correspond to hardware signals of ZOLC or to
conditions issued by the processor instructions as those
by dynamic branches. This graph structure is the Task
Control Flow Graph (I'CFG) and is defined as follows:

Definition 1: We call TCFG(V U V', E) the directed
cyclic graph representing the control flow in an arbi-
trarily complex loop nesting of an application program;
each node V represents exactly one primitive DPT; each
node V' represents one composite DPT that results from
applying a hardware-dependent transformation operator
on a DPT subset; the edges E represent control depen-
dencies among data-processing tasks.

Tasks that do not include a loop overhead instruction
pattern are designated as primitive forward tasks, while
those including exactly one such pattern are termed
as primitive backward tasks. The remaining tasks are at-
tributed as composite tasks, and can be introduced as
a result of graph transformations applying hardware-
dependent rules. Such case is explained in Section 4.3.

As a motivational example, the full-search motion
estimation kernel (fsme) is considered, which is used in
MPEG compression for removing the temporal redun-
dancy in a video sequence [18]. The algorithm consists
of six nested loops; the loop-nesting diagram for fsme
is shown in Fig. 1(a), with the corresponding TCFG in
Fig. 1(c) (graph layout obtained by [19]). Primitive back-
ward tasks are denoted as bwd;, where i is the enumer-
ation of the loop nest, starting from one since the zero-
th level is preserved for the predecessor and successor
statements to the nest. Composite backward tasks can
be distinguished by a range notation with bwd,,, — bwd,,

(as in Fig. 4) or a list notation with {bwd,,,,...,bwd,}, the
latter if they consist of non-consecutive backward tasks.
Forward tasks are denoted as fwd;(j), where i is the loop
number and j selects a specific task of this type from the
i-th loop. This formulation to distinguish the task types
is used for the internal data structures of a compiler pass
for forming TCFGs. The frequently encountered [oopend
signal denotes a loop termination condition at the time
execution resides in a bwd task. This signal would be
produced by ZOLC to drive task switching.

To elaborate, backward tasks are noted with a star in
Fig. 1(a)-Fig. 1(b) and can be placed at the innermost
or closing position of a loop, with the final task, bwd0,
marking the exiting position of the loop structure. The
loop indices are updated during the execution of these
tasks. Forward tasks are quoted with a circle and are
placed in non-terminating positions of a loop. Such tasks
can participate in control flow decisions and have no
effect on the loop indices.

The TCFG representation of loop structures has been
used for the following: a) to generate the control part
of ZOLC for non-programmable processors [20] and the
ZOLC initialization sequence for programmable proces-
sors, b) to apply formal graph transformations as those
induced by loop transformations and c) to enable a de-
sign space exploration procedure for hardware-software
partitioning with hardware DPT accelerators.

4 USE-CASES OF A ZOLC ENGINE

4.1 Case study: Blocked matrix multiplication on a
ZOLC-enhanced DSP

In order to provide a typical usage example of ZOL-
controlled operation, we assume a hypothetical (with
a working cycle-accurate model) DSP engine, hereafter
termed hDSP. The hDSP is a signal processing ASIP
(application-specific instruction-set processor) with het-
erogeneous storage (dual-memory banks and dedicated
registers), single-cycle multiply-accumulation, advanced
address generation capabilities, and a 5-stage pipeline
inspired by the classical DLX design.

A plethora of multi-dimensional signal processing ap-
plications such as color space conversion, frequency-time
domain transforms, and image filtering, involve process-
ing on matrix-matrix multiplication primitives, which
are implemented as triple-nested loops contained within
outer loops for block scanning. Such performance-critical
kernel is most probably written in native assembly which
is deduced from the reference code of Fig. 2(a). Fig. 2(b)
shows the hand-optimized code segment of the kernel
where AGU denotes integer operations on the address-
generation unit, ‘@ the current address for accessing
an array variable in a memory bank (X or Y), ‘||’ is
used for concurrent micro-operations, RI, RF, RX, RP
are the initial and final loop parameter, current index
and generic parameter register classes, and ACC is the
accumulator.
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Fig. 1: Loop structures and TCFG views for loop-intensive algorithmic kernels. (a) Loop nesting diagram for a
fully-nested structure (fsme). (b) A complex loop structure found in a biorthogonal wavelet filter. (c) TCFG for the

fsme.

For branch operations of 3-cycle penalty, the overall
cycle requirement for the inner loop of Fig. 2(b) is
10 cycles. The benefit from using ZOLC is that the
increment and compare-and-branch operations (aggre-
gating 4 cycles) can be removed and replaced by a task
switching operation associated to the instruction fetch
of the last useful instruction in the inner loop (MAC
ACC, @COEFF, @I MAGE). When using ZOLC, the inner
loop executes in 6 cycles, which scores an approximate
40% boost in cycle performance. In general, information
not available at compile-time has to be updated in the
ZOLC storage resources at run-time, which reveals the
need for instruction extensions to the processors for
this purpose. Such loops are termed semi-static and
cannot be unrolled at compile-time. They are common
in some applications e.g. the biorthogonal (2,2) Cohen-
Daubechies-Feauveau wavelet filter (Fig. 1(b)) used in
Wavelet-Scalar Quantization (WSQ) image compression
[21].

For ZOL-controlled execution, prior entering the loop
nest, the task-related information is stored in a set of
local register files. The data attributed to each task
consist of the following elements, also shown in the form
of the TaskContext ‘record’ in Fig. 2(c):

o the PC entry address (absolute or relative, depend-
ing on the ZOLC implementation). For multiple-
entry tasks there exist more than one such addresses

o the PC exit address, i.e. the address of the last

useful computation instruction in the task. Similar
to above, multiple-exit tasks have more than one
possible PC exit addresses monitored

o the encodings for the possible subsequent DPTs; the
decision is taken at run-time by inspecting the loop
end condition (for bwd tasks) or possibly a dynamic
forward branch condition (for fwd tasks)

o the loop address to which the subsequent possible
tasks are contained

o the task type (fwd/bwd) for these tasks

Fig. 2(d) illustrates the context values for the most
important DPTs in the matmult algorithm: fwd4(0), bwds
and bwdy.

ZOLC initialization for preparing the processor to
enter a state where all looping is controlled by ZOLC
can be done by an instruction sequence or configura-
tion stream produced by a separate compilation pass
operating on the TCFG representation (Section 6.1). A
few instruction extensions are also required which are
discussed in Section 6.2. For the entire 5-loop matmult
algorithm, the required additional cycles are:

« 16 instructions for storing the entry and exit PC ab-
solute (or offset) address for marking the boundaries
of a task

o 14 instructions for initializing the task switching
information when residing in a specified task con-
text. In this case, a task context is represented by
the concatenation of the task enumeration and the
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s M\
INPUT

image :
coeff :
OUTPUT
output:

[0..N*M-1] array
[0..B-1,0..B-1] array

[0..N*M-1] array

matmult ()
{

For (i=0; i<N; i+=B) {
For (j=0; j<M; j+=B) {
For (k=0; k<B; k++) {
For (1=0; 1<B; 1l++) {
acec = 0;

For (m=0; m<B; m++) { AGU A.Y.1 = RX[1] + RX[3]
acc += coeff[k] [m]*image[ (i+m) *M+ (j+1)];} LOD Q@OUTPUT, A.Y
STR ACC, Q@OUTPUT
output [ (i+k) *M+ (j+1)] = acc; INC RX[4], #1
} P} BNE RX[4], RF[4], loop4
\L J \_ )

e M
loop4: # £fwd4(0)

# acc =0

ACC = 0

RI[5] =0
loop5: # bwd5

# acc += coeff[k+B*m] * image[ (i+m)+M* (j+1)]

AGU A.Y.2 = RX[2] + RX[4]
AGU A.Y.2 = A.Y.2 * RP[2]

AGU A.X.2 = RX[5] * RP[5]

AGU A.X.1 = RX[3] || A.Y.1 = RX[1] + RX[5]
LOD QCOEFF, A.X || LOD Q@IMAGE, A.Y

MAC ACC, @QCOEFF, QIMAGE

INC RX[5], #1

BNE RX[5], RF[5], loop5

# bwd4

# output[ (i+k)+M* (j+1)] = (uchar) (acc>>8)

(@)

record TaskContext is
PCEntryAddress : data_ vector (0:PCW-1)
PCExitAddress : data_vector (0:PCW-1)
record TaskSwitchingEntry is
TaskData : data vector(0:log2(Nt)-1, 0:1)
TaskTypeSelect: data bit(0,0:1)
LoopAddress : data vector(0:log2(N1)-1, 0:1)
end record

end record

\ ;

()

o
TaskContext

|
| |
|
| |
: PCEntry PCEXxit TaskData TaskType LoopAddress :
i : : ; : ! |
| : H i ! : |
I | oxt10 0x110 2,2 bwd, bwd 55 '
| 1
| 0x114 0x128 2,3 bwd, bwd 54 |
| 1
: 0x12¢ 0x130 1,4 fwd, bwd 4,3 :
| ; v v : ; |
| | 1 |
______ —I______(_____ _

Form new
task address

i

|
I

|

: Inqex EI F",S RF 14__> Evaluate

! ! : | H ! end-of-loop
I > -

I | RX[4] | Loops:| 0 1 7 } condition

I

: RX[5] | Loops:| 0 1 7 }

Fig. 2: ZOLC-aware application mapping for the blocked matrix multiplication algorithm (matmult). (a) ANSI
C reference code. (b) Hand-optimized hDSP assembly. (c) The TaskContext record encapsulating the intrinsic
information attached to a data processing task. (d) T'askContext and GlobalContext values for the performance-

critical tasks of the algorithm.

value of the end loop condition for the current loop
(possibly with multiple-exits). The task switching
information consists of the task enumeration, the
task type (fwd or bwd) and the loop address for a
possible subsequent task.

o 15 instructions for setting the initial (e.g. lower
bound), step (stride) and final (e.g. upper bound)
value for a loop.

« an additional instruction is needed for configuring a
mask register used among others for configuring the
induction expressions associated to each bwd task in
the index calculation ALU. By default, addition and
subtraction operations are assumed.

The overall number of cycles (46) is negligible when
compared to the over 5.7 million required for matmult
on CIF (352 x 288) images (for the Y-component of the

image) with an 8 x 8 primitive. For a 20-loop algorithm
(fsme_dr mentioned in Table 4), the overhead cycles are
limited to 164, which are over three orders of magnitude
less than any other method can sustain including [8].
Also, the ZOLC approach has more positive side-effects:
stricter real-time constraints may be applied on the
application since the best against worst case execution
time difference (BCET-WCET) is reduced. In addition
to these reasons, the usage of ZOL control is even
more important for data-parallel architectures with short
inner loops. For the MorphoSys architecture featuring
a 2D-array reconfigurable datapath, the authors report
speedups of 4 due to zero-overhead looping for frequent
tasks containing block data movement operations [22].
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4.2 Supporting multiple-entry loops for ZOLC oper-
ation

Multiple-entry loops are irreducible regions of the CFG,
undetectable by the classic natural loop analysis algo-
rithm [17] used by many retargetable optimizing com-
pilers [23], [24], [25]. The consequence is that familiar
code optimization techniques are not applicable on these
regions. The main approach to overcome this is to use
traditional node splitting [17] that theoretically increases
code size exponentially and is avoided in the majority of
research compilers. Optimized versions of node splitting
have been suggested recently [15] that employ an elab-
orate graph type for attributing backedges in the CFG
to their unique classes. A drawback is that a significant
paradigm shift is imposed since extensive modifications
are required to current compilers to take account their
proposed representation.

In order to explore multiple-entry loops for potential
of ZOLC operation, the TCFG representation of Fig. 3(b)
suffices to accurately model the loop structure for the
code in Fig. 3(a). Then, the proper instructions will be
removed from all bwd tasks and from fwd tasks that are
static loop initialization pattern containers. After that,
simply by edge enumeration, the necessary task sequenc-
ing information for initializing the ZOLC is derived.

The TCFG sustains a uniform representation for com-
plex loop structures. Compared to the best methods
for handling irreducible loops, not only code bloat is
avoided, but code size and dynamic instructions are
reduced.

4.3 Supporting alternative models of hardware loop-
ing

An interesting application of the presented ZOL pro-
gram control is its synergistic use with other hardware
techniques. Such case is when supporting the update
of multiple indices within a single clock cycle [8], [26].
For the examined application (fsme), four consecutive
backward tasks are merged to the ‘bwdl-bwd4’ com-
posite node as shown in Fig. 4. Thus, a number of
loop end signals equal to the number of loops in the
kernel are required. In Fig. 5, the rules implemented by
a primitive and the referred backward task are shown. In
the latter case, the corresponding transformation unit is
able to restructure a given TCFG by merging consecutive
primitive backward tasks.

5 INCORPORATING ZOLC TO A PROGRAM-
MABLE PROCESSOR
5.1 Template view of the ZOLC-enhanced processor

A block diagram indicating how the proposed ZOLC
architecture is incorporated in the control path of a
typical RISC processor is shown in Fig. 6. The purpose
of ZOLC is to provide a proper candidate program
counter (PC) target address to the PC decoding unit
for each substituted looping operation. Typically, the

Ll: cntl++;

i<10; i++) {
al[i-1] + 1;

for (i=1;
a[i] =

if (cntl==10 & i==9)

break;
else if (cntl!=10 & i==9)
goto L2; }
cnt2 ++;
L2: for (j=0; 3j<5; j++) {

b[j]l = 2*a[j]-1;

if (cnt2==1 & j==4)

break;
else if (cnt2!=1 & j==4)
goto L1; }
\ /

cent2l=1 & j==

cntl!=10 & i==

cnt2==1 & j==4

(b)

Fig. 3: Illustrative C source code and the corresponding
TCFG for a case of multiple-entry loops. (a) C source
code for the example. (b) The corresponding TCFG.

design of the instruction decoder, the PC decoding unit
and the register file architecture require modifications in
presence of ZOLC hardware. ZOLC is composed from
the task selection unit, which determines the appropriate
next PC value when execution resides in a loop structure,
the loop parameter tables where the loop bound values
are kept and the index calculation unit.

Two modes of operation are distinguished from the
ZOLC side. In “initialization” mode, the ZOLC storage
resources are initialized by processor instructions that
employ a special paged-access format added to the
original instruction set architecture. In “active” mode,
the ZOLC: a) determines the following task, b) it issues
a new target PC value and a set of candidate exit values
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(s T)

lloopend[6]

loopend[5] lloopend[4]

loopend[5]

bwd1-bwd4

fwd2(0)

lloopend[1] lloopend[2]

loopend|[3]

loopend[1]

Fig. 4: TCFG for an fsme implementation using the index update hardware of [8].

for the case of multiple-exit loops to PC decode, c) loop
indices are updated and written back either to specified
registers of the integer register file or to a separate index
register bank. The task sequencing information is stored
in a LUT within the task selection unit. On completion of
a data processing task, a task end signal is issued from
PC decode, and an entry is selected from the LUT to
address the succeeding data processing task and the loop
parameter blocks, based on which task has completed
and the status of the current loop. The initial, final and
step loop parameters are used to calculate the current
index value and determine if a loop has terminated.

5.2 Architectural details for ZOLC components

As can be seen from Fig. 6, the ZOLC accepts a control
vector from the modified instruction decoder, which
consists of write enable signals for its register files, page
selection and register address for selecting a specific
register. This is the required control information that the
task selection unit, the loop parameter tables, and the
modified register file accept from the decoded instruc-
tions. For the example case of XiRisc, the instruction
decode vector is extended to produce kent + kext + 7
additional bits dedicated to handle the ZOLC resources,
where ke,+ and k., are the maximum permissible num-
ber of entries/exits for each loop.

Regarding the index registers on a processor utilizing
a ZOLC unit, there exist two possibilities: the indices
can be allocated as a separate register class on the actual
integer register file or an explicit index register bank
should be introduced in the architecture. The former case
is preferred since additional instruction extensions to the
opcodes needed for ZOLC initialization, would not be re-
quired. In practice, we have used 16-register index class
on the 64-entry general-purpose register file of the hDSD,

and correspondingly 8 indices on the original XiRisc
(32 entries) without negative impact on performance
for the examined benchmarks as it is also endorsed by
liveness analysis results on Machine-SUIFE. If the index
register bank approach is followed, 3 additional bits are
required for the instruction encodings, which may not
available. The loop parameter tables provide respective
storage for the loop bound (initial, final) and stride (step)
values. Compile-time unknown bound or stride values
are handled with dynamic updates. Thus, a shadow
path is designed for transferring the content of general-
purpose registers to the corresponding paged registers.
Simple move instructions are used to update the loop
parameters at normal program flow.

The task selection unit incorporates a partitioned LUT
for selecting the following task, loop address and task
type. The number of entries to this LUT is 2 x (n; — 1)
where n; is the maximum number of tasks in the loop
structure. In the most extreme case, n; = 2 xn; + 1
where n; is the maximum number of loops supported on
a specific hardware manifestation of ZOLC processing.
The data word length for these LUTs is loga(ny) + 1,
loga(n;) and 1, correspondingly, since it is pointless to
specify task transitions with bwd0 as the source. Thus,
the number of tasks able to drive task switching is given
by n; = 2 x n;. For 16-bit unsigned immediates, an entry
for each DPT of a 128-loop algorithm could be assigned
with a single instruction.

Also, following a simple path to implementation, ke
dedicated register files for determining the PC target for
the following task and the candidate k.,: PC values for
the multiple-exit condition have to be placed in the same
unit. If no support for multiple-exit loops is required,
then kent = keyt = 1. The overhead of multiple PC
storage being unused can be confronted with a more
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Primitive BackwardT ask()
begin

else
increment index[m]
endif
end

Composite BackwardT ask()
begin

increment index[m]

increment index[n-1]

else
increment index[n]
endif
end

useful computation operations in this task;
if index[m] equals loop-final[m] then
reset index[m] to loop-initial[m]

useful computation operations in this task;
if index[m] equals loop-final[m] then
index[m]..index[n] := loop-initial[m]..loop-initial[n]
elsif index[m+1] equals loop-final[m+1] then
index[m+1]..index[n] := loop-initial[m+1]..loop-initial[n]

.e.l.sif index[n] equals loop-final[n] then

index[n] := loop-initial[n]

Fig. 5: Index update in primitive and composite backward tasks, respectively.

challenging realization utilizing key entries for the PC
entry/exit addresses of a task. Each task is assigned
a double-key (keyent, keyeqyt) notifying the number of
entries and exits for the specified task. The actual PC
addresses are then accessed in incremental addresses
from the key. The PC target is determined among k..
possible choices based on the value of the task entry PC
selection vector, shown in Fig. 6. The simple equality
comparators used for evaluating the outcome of the
multiple-exit condition, reside to the PC decode unit.

The index calculation unit consists of a 2-state FSM
to acknowledge the status of the running loop (first or
subsequent iteration) and the combinational index up-
date module. In general, this unit is an additional ALU,
but for the examined applications, an adder-subtractor
suffices since all index updates were simple additions to
a constant or variable. Index update is performed only
on the completion of a bwd task. Also, the integer register
file is modified to support one read and one write port
that are dedicated to loop index transfers.

The storage bit count for the ZOLC configurations can
be easily derived from the summary of the modules
introduced due to ZOLC in the XiRisc case study shown
in Table 1. In the following expression, the storage bit
count is calculated by summing up the contribution of
each module given as the product of the number of
instances (Quantity) by the number of entries (Num.
entries) and bits per entry:

Z (Quantity) x (Num. entries) x (Bits per entry) =
Units

2-(4-n;+1)-(loga(ny) +1) + 2 (kent + kext) - 1y - PCW
+(3-DW +1)-m

where:

— Ny, kent, ket have already been defined in the text
— DW is the data word width of the processor
— PCW denotes the program counter width

5.3 RT-level specification of the ZOLC mechanism

In order to assist the application of ZOLC mechanisms
we have developed pseudocode semantics for their rep-
resentation shown in Fig. 7. A formal description of
ZOLC micro-architectural level operations can be ex-
ploited in the scope of high-level synthesis for DSP-
oriented ASIPs. Table 2 summarizes the notation used
for signals and storage resources of the ZOLC. The
required storage resources are: the task selection LUT
(ttlut_m), the index register bank (I X RB), the dynamic
flag register bank consisting of 2-bit entries that encode
information for fwd tasks (DF RB), a status register for
index calculation (muxsel_m) and the loop parameter
registers (Iparams_m). Also, NUM_ENTRIES = kent
and NUM_EXITS = key dedicated register files are
required for determining the PC target for the following
task and the candidate PC exit values if multiple-exit
conditions need be supported, respectively.
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Fig. 6: Incorporating the ZOLC architecture to programmable RISC processors.

TABLE 1: Summary of additional storage resources for XiRisc introduced by ZOLC.

Unit Component Quantity Num. entries Bits per entry
Task selection unit LUT (task_d) 1 2-nj log2(n})
LUT (ttsel) 1 2-n} 1
LUT (loop_a) 1 2-ny loga(ny)
Output register 1 1 | log2(n}) + loga(ng) + 1
PCent_m register file kent nj PCW
PCext_m register file kext n; PCW
Loop parameter tables | Register files 3 ng DW
Index calculation unit | Mask register 1 1 ny

During PC decoding with the ZOLC in operation, a
certain task_d value has been issued and the PC value
is compared to the PCext_m entries for the same task_d
(for all the potential task exits). The taskend_t vector
encodes the result of this parallel comparison, while
zolc_trg is its binary encoding and taskend is active
when there is at least one match of a task exit address. In
such case, the ZOLC behavior is accessed to determine
the successive PC value and can be decomposed into
the LoopParams, IndexCalculation, and TaskSelection
procedures. As the result of these evaluations occurs
during a single clock cycle, the newly evaluated PC_zolc
value is assigned to the PC and is available at the
succeeding cycle.

The task of the LoopParams process is to access the
current loop parameters (initial, step, final value) from
the corresponding entry of the loop parameters register
banks addressed by loop_a. IndexCalculation is used
for evaluating the current loop index value. For this
purpose, the muzsel_m status register denotes for which
loop its loop index must be initialized during the next
index update. The loopend signal, also calculated by the
index calculation unit, signifies the final iteration of a

loop. T'askSelection describes the actual task switching
mechanism. For backward tasks and trivial forward
tasks (not exited by an explicit conditional branch), the
task address (task_a) for the subsequent task is formed
by concatenating the task_d and loopend signals. For-
ward tasks exited by dynamic branches require addi-
tional information for the branch target task encoded
in the DFRB status register. On the presence of an
active taskend, the information for the following task
is read from the task selection LUT. The PCent_m and
PCext_m register files are addressed by task_d. The
specific entries for the zolc_trg ‘column’ address from
the PCent_m and PCext_m provide the appropriate
PC'_zolc and the task exit PC for the following task, re-
spectively. This approach demands that the task selection
LUT can be read asynchronously.

// PC decoding operations
PC Decoding()
begin
or i in 0.NUM_EXITS-1 do
if PC equals PCext_m[task_d].i then
taskend_t[i] := 1
else

continued on next column
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continued from previous column

continued from previous column

taskend_t[i] := 0
endif
endfor

N = NUM_ENTRIES = NUM_EXITS
zolc_trg := encoder-N-to-log2-N(taskend_t)
taskend := selector-N-to-1(zolc_trg)

if PC_task_ext equals PC and ZOLC enabled then
LoopParams()
IndexCalculation()
TaskSelection()
PC := PC_zolc

elsif a branch or jump has occured then
usual PC decoding operations

else
PC := PC + word-size-in-bytes

endif

end

// accessing current loop parameters
LoopParams()
begin
initial := Iparams_m[loop_a].INITIAL
step := lparams_m{[loop_a].STEP
final := Iparams_m[loop_a].FINAL
end

// current loop index update
IndexCalculation()
begin
if not(muxsel_m[loop_a]) then
index_t := initial + step

else
index_t := IXRB_m[loop_a] + step
endif
if index_t greater than final then
loopend := 1
else
loopend := 0
endif

if not(loopend) and not(ttsel) then
IXRB mﬁoop a] := index_t

elsif loopend and not(ttsel) then
IXRB_m[loop_a] := initial

endif

if taskend and not(ttsel) and not(loopend) and
not(muxsel_m[loop_a]) then
muxsel_m[loop_a] :=1
elsif taskend and not(ttsel) and loopend then
muxsel_m[loop_a] := 0
endif
end

// task switching mechanism
TaskSelection()
begin
if not(ttsel) then
task_a := task_d concat loopend
else
switch on DFRBJ[task_d]
when 0: task_a := task_d concat loopend
when 1: task_a := task_d concat 0
when 2: task_a := task_d concat 1
endswitch
endif

if taskend then
task_d := ttlut_m[task_a].TASK_DATA
ttsel := ttlut_m[task_a].TTSEL
loop_a := ttlut_m[task_a]. LOOP_A
endif

continued on next column

PC_zolc := PCent_m][task_d].zolc_trg
PC_task_ext := PCext_m][task_d].zolc_trg
end

Fig. 7: Pseudocode for ZOLC microarchitectural-level
operations.

TABLE 2: Notation used in the pseudocode of Fig. 7.

Name Description
{name}_a Address signal
{name}_d Data signal
{name}|ent—ext] Referring to loop entry/exit
{name} _m Register (file)/memory resource
{name} _t Temporary
*{name in caps} Field name
*{name in lowcase} | Column select for 2D arrays

6 SOFTWARE AND HARDWARE CONSIDERA-
TIONS FOR ZOLC SUPPORT

6.1 Automating ZOLC optimizations within a practi-
cal compiler-assembly optimizer framework

To support the potential use of the ZOLC unit, proper
development tools are required in order to ease code
generation. For the best possible performance, an ad-
ditional code generation pass should be executed for
exploiting ZOLC, prior to register allocation and just
after constructing the optimized CFG. Its purpose is
to emit ZOLC initialization code and to insert move
operations that are required for loops with dynamic
bounds as in the case of loop tiling [5].

Regarding XiRisc, the available software toolchain is
based on the gcc compiler. The effort required to devise
and import a new internal compilation pass to gcc can
be devastating, since it was initially designed for adding
new machine targets but not new code transformation
passes. A workaround is to post-process the resulting
assembly code and this approach was taken for obtaining
the performance measurements of Section 7.2.

As a proof-of-concept of supporting ZOLC in an au-
tomated compiler framework, we have developed an
analysis and markup pass in Machine-SUIF [27] working
at the CFG level which is used to pass macro-instructions
and additional information to a SALTO [28] transforma-
tion pass for finalizing the ZOLC initialization sequence.
The targeted architecture is named ‘SUIF real machine’
or SUIFrm for which we have a working experimental
backend written for Machine-SUIF and a set of ArchC
[29] instruction- and cycle-accurate simulators. SUIFrm
has been designed as a ‘real’ ISA, closely matching the
SUIFvm IR (which is the actual Machine-SUIF IR). The
main additions for the SUIFrm backend were:

— Homogeneous register architecture (12, 32, 64 reg-
ister versions)

— Proper interpretation of the general convert (cvt)
operator to forms of zero-extension (zxt) and sign-
extension (sxt)
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Fig. 8: Part of a compilation flow supporting the automa-
tion of ZOLC code generation.

— Procedure argument passing via specialized argu-

ment registers

There are still certain features missing from the
SUIFrm target affecting its capability of servicing
general-purpose applications: a) lack of hardware
floating-point support, b) C structs, unions and recur-
sive procedures are not supported. However, SUIFrm
has been successfully used on the kernel benchmarks
of Subsection 7.2. Also, a set of SUIFrm backends
(with/without ZOLC support) has been developed for
SALTO.

Fig. 8 illustrates the code generation procedure inte-
grated within our compilation flow, which comprises of
SUIF frontend and Machine-SUIF backend functionality,
complemented with passes for ZOLC optimization writ-
ten according to the Machine-SUIF or SALTO application
programming interface. Its operation can be subdivided
into the following stages:

— Function inlining
In this stage, selective function inlining is applied to
expose as many basic blocks as possible in the top-level
function of the application program for a given code size
constraint.

— Selection of the optimization unit

As a consequence of operating on CFGs and not
on whole-program IR units (e.g. program dependence
graphs), it is mandatory to select a single procedure
for applying the ZOLC optimizations. The optimization
unit can be selected on the basis of execution frequency
profile of the application program under consideration.

— CDFG construction
The collection of connected CDFGs for the entire al-
gorithm is constructed. It is assumed that a form of
operation scheduling has been performed at least locally
(on the basic block DAGS).

— Loop analysis
This stage has the purpose of identifying the loop-
ing statements in the algorithm, either by natural loop
analysis [17] which is the currently supported method
in Machine-SUIF or preferably by more sophisticated
multiple-entry loop detection methods. The natural loop
analysis report contains the loop nesting depth and three
additional boolean flags for determining: a) if a loop
begins at the specified node (begin_node), b) if a loop
ends at the specified node (end_node), c) if an exit from
the loop is possible from that node (exit_node). General
loop analysis identifying loops with multiple entries and
multiple exits to non-sequential basic blocks, would ad-
ditionally require knowing to which basic block, control
is transferred from its predecessor loop exit basic block.
Only a few experimental compiler infrastructures seem
to support direct multiple-entry loop detection [30].

— Main code generation
In this stage, the instruction selector (‘do_gen’ pass)
and register allocator (‘do_raga’) are invoked. The in-
struction selector of Machine-SUIF undertakes the task
of generating SUIFrm code from the SUIFvm IR. The
core of ‘do_gen’ implements a simple pattern-matching
translator from SUIFvm to SUIFrm and it only allows
room for peephole-like optimizations in this process. The
register allocator is more sophisticated and implements
the well-known method of iterated register coalescing
[31]. At the end of the stage, valid SUIFrm assembly can
be emitted.

— TCFG construction (tcfggen pass)
Based on the loop analysis results, the control flow
of the algorithm is mapped to its TCFG. Further, this
stage passes the static information for the loops in the
algorithm to the subsequent stage in the form of four
different types of pseudo-instructions. An LDST instruc-
tion incorporates all the information needed for creating
a task selection LUT entry: for a given task encoding
(current-task_d), the succeeding task (next-task_d), its type
(next-ttsel) and loop address (next-loop_a) are given. DPTI
instructions denote the first and last basic block of a
task, while a LOOP provides a given loop address, the
actual loop index register and the loop parameters. An
OVERHEAD marks its following non-pseudo instruction
whether it must be kept (default), replaced by a no-
operation, or entirely removed.

— ZOLC code finalization (zolcgen pass)
The zolcgen SALTO pass produces the actual ZOLC
initialization code that has to be inserted in a preced-
ing basic block to the loop nest to update the ZOLC
storage resources and is typically the first basic block of
the targeted procedure. This process also involves the
following tasks:
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1) conversion of LOOP pseudos to an LDSA-LDSI-
LDSS-LDSF sequence of instructions (and their
repositioning). The LDS[I|S|F] instructions are ex-
plained in Table 3 while an LDSA (Set index reg-
ister alias) associates the general-purpose register
used for indexing of a certain loop with its loop_a.
LDSA instructions can be used for static renaming
in case of an architecture with dedicated loop index
registers. For a homogeneous register architecture
this information would be mapped on a small LUT
providing the alias relation of registers used for
indexing with their correspondent loop addresses.

2) the overhead instructions are properly handled and
the respective overhead markers are removed

3) the task entry and exit PC addresses are calculated
and the corresponding LDS[N|X] instructions (Set
a PC entry/exit address) are created.

6.2 Elaborating on hardware and software implica-
tions of ZOLC on embedded processors

The ZOLC technique is a control path optimization
generally applicable to the rather wide context of in-
order completion embedded processors. Potential issues
regarding the use of ZOLC are highlighted in the fol-
lowing few paragraphs.

— Incorporating ZOLC to VLIW processors
Theoretically, the ZOLC technique could be applied on
VLIW processors as well, with much increased overhead
in keeping track of redundant state due to the effect
of software pipelining inferring a multiple-index con-
text (multiple iterations alive at the same control step).
However, as stated in [32], contemporary VLIW DSP
processors tend to omit the feature of ZOL. For example,
the TMS320C62xx (with 8 issue slots) does not support
ZOL instructions; it requires the processor to explicitly
perform the looping operations. This is reasonable for
the VLIW case since VLIW-based processors are able
to execute many instructions in parallel. The operations
needed to maintain a loop, can be executed in parallel
with other arithmetic computations, assuming that the
optimizing compiler for the processor is able to find such
schedule. For an optimistic schedule, this would achieve
the same effect as if the processor had dedicated looping.

— Integration of TCFG extraction for ZOLC code gen-

eration in current compilers
An inherent characteristic of CDFG-like compiler IRs (for
example in SSA form) is to represent each procedure by
a single CFG which complicates TCFG extraction and
therefore directly affects the quality of ZOLC code gener-
ation. The extent of applying procedure expansion (inlin-
ing) and recursion are the two dominant problems in this
approach. On the other hand, the program dependence
graph (PDG) [33] representation allows multi-procedure
control dependence analysis algorithms that are much
more compatible to the requirements for generating a
program-level TCFG. A composed control-dependence
graph (CCDG) generator written for Machine-SUIF has

TABLE 3: Instruction-set extensions for ZOLC support

on the XiRisc processor.
Mnemonic Description
LDSL Set task transition LUT entry
LDSNi Set PC entry address for kent = %
LDSXi Set PC exit address for ket = ¢
LDSM Set mask register for muxsel_m and index
calculation ALU initialization
LDS[I|S[F] Set initial/step/final loop parameter
MOVG2[I|S[F] | Move a general-purpose register
to an initial/step/final loop parameter register
MOVII|S[F]2G | Move an initial/step/final loop parameter
register to a general-purpose register
6 2 3 5 16
Z-type | opcode | sell | sel2 | imm1 imm2

Fig. 9: Suggested instruction format for ZOLC initializa-
tion. It is assumed that ke, kexr < 4.

been reported in [34] and is under consideration in order
to be used for further extension of our ZOLC code
generation tool.

— Instruction-set extension for ZOLC support

For the software initialization of ZOLC, a small set of
instruction extensions are needed for executing special-
ized load operations on the added hardware. We have
implemented this particular approach for incorporating
ZOLC in XiRisc [9] where three new opcodes (LDS,
MOVG2X, MOVX2G instructions) were committed with
the corresponding format shown in Fig. 9. The added
instuctions are summarized in Table 3.

— Choice of a separate index register bank or dedi-
cating a new register class for indexing

Traditionally, DSP processor architectures have used in-
dex register banks enabling more efficient use of com-
plex addressing modes. The easiness of allocation on
homogeneous register architectures on the early RISCs
prohibited the use of distributing fast storage resources
as registers. For these reasons we believe that the index
register bank approach can be viable on new ASIP ar-
chitectures without source or binary compatibility issues
to prior ISA generations. Still, using an index register
class can be applied in embedded processor families,
providing a form of source compatibility is maintained
via assembly-level transformations. Since index values
usually demand reduced bitwidth, estimated area and
power consumption can be significantly reduced. In
such scheme, the introduction of smaller bitwidth reg-
isters in a homogeneous architecture has been used in
asymmetrically-ported register files [35] with significant
benefits in power consumption.

— Task switching on multi-cycle or data-dependent
timed instructions

The process of selecting the proper subsequent task is
performed dynamically during instruction fetches. Par-
allel comparisons to all PC exit addresses of the current
task, reveal if the currently fetched instruction is the last
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in the task. Also, the decision process accounts at run-
time the loop end condition (for bwd tasks) or a dynamic
forward branch condition (for fwd tasks). These micro-
operations suffice only for the simplest cases, that is the
last DPT instruction is single-cycle and the processor
supports in-order completion. For multi-cycle instruc-
tions with known latency, the decision process should
be guarded until a proper number of cycles prior the
executed instruction is retired. For a 4-cycle multiply
operation, the dynamic decision should be enabled 3
cycles after its fetch from program memory. Instructions
with latency unknown at compile-time (e.g. the data-
dependent multiplication on the ARM7TDMI requires
2 to 5 cycles in the execution stage) decrease ZOLC
performance, and if possible should be reordered by the
compiler.

7 PERFORMANCE EVALUATION

7.1 Hardware requirements for implementing ZOLC
mechanisms

For the purpose of performance evaluation, we have
implemented three different manifestations of a ZOLC
engine. As ZOLCfull we refer to a full-featured version
of ZOLC supporting 32 task switching entries (which
corresponds e.g. to 16 single-entry DPTs) describing an
arbitrary complex 8-loop structure with a maximum of
4 entries/exits per loop. ZOLClite differentiates from
ZOLCfull in the lack of support for multiple-exit loops.
In this case, a loop can only be exited from the tail
instruction of the stripped loops, being the last useful
computation instruction of a loop body. Control-flow
is permitted inside loop bodies as long as it does not
refer to locations outside the loop. uZOLC is a mini-
malistic version of a ZOLC engine pronounced “micro-
ZOLC”, usable for single loops. The different ZOLC
versions were incorporated in the VHDL description
of XiRisc (noted as XRdefault). XRdefault and the three
ZOLC versions of the XiRisc processor were synthesized
for an STM 0.13y standard cell library. Given that the
corresponding results have been obtained prior place-
and-route, the processor cycle time has not been affected
(maximum clock frequency around 170MHz for all ver-
sions). This is due to the fact that a path through the
1/1 throughput/latency cycle multiplier was the critical
path of the processor for the ZOLC configurations as
well. In fact, the estimated maximum clock frequency
by the synthesis tool for ZOLCfull was even higher than
the default version, however this is probably due to the
evaluation of wire load delays.

The combinational area overhead for ZOLC was mea-
sured from a few hundred gates (298 for uZOLC) to a few
thousand gates: 4428 for ZOLCfull and 4056 for ZOLClite
given that XiRisc synthesizes to an area of 21309 NAND
equivalent gates (combinational logic and storage). As-
suming the default XiRisc options (PCW=16, DW=32)
the storage demands are easily extracted for the three

ZOLC configurations. As can be derived from the an-
alytical expression of Section 5.2, 171, 1552 and 3088
storage bits are needed for the uZOLC, ZOLClite and
ZOLC full, respectively. Even though not implemented,
the storage bit counts can be significantly diminished if
size-extension circuitry is used in order to sign-extend 8-
and 12-bit stored branch distances in the PC entry and
exit tables to the PCW width. If applied, an average of
22.8% is saved regarding storage elements.

7.2 Cycle performance of a MIPS-I processor with
ZOoLC

Since the XiRisc processor is ISA compatible to MIPS-I,
we have made slight modifications on an existing MIPS
R3000 model written in ArchC and added ZOLC to it in
order to obtain a cycle-accurate XiRisc simulation model.

We have selected two sets of benchmarks for compar-
ing the efficiency of a XiRisc configuration supporting
ZOLC which are detailed in Table 4 alongside with
the dynamic instruction counts. The first set consists
of 10 data-intensive kernels, common to many applica-
tions, each consisting of a single C file with reduced
data inputs in the source code. Apart from the kernel
benchmarks, 10 application instances have been collected
from MiBench, for which the “small” data inputs were
applied. All programs were compiled with gcc and -O3
-mips1 options forced, with the exception of the susan
benchmarks, where enabling floating-point emulation (-
msoft-float) was necessary. Both a ZOLClite and an uZOLC
configuration of ZOLC hardware have been evaluated
for these measurements. For the former case, loop dis-
tribution was applied by hand for generating maximal
feasible loop structures for the fsme_dr and rcdct kernel
benchmarks.

The relative cycle measurements for the examined
benchmarks are given in Fig. 10. It can be seen that
the use of ZOLC in its ‘lite’ configuration is respon-
sible for an average reduction in execution cycles of
25.5% and 10% on the selected kernels and applica-
tions, respectively. For some algorithms (rcdct, matmult),
performance improvement is well over 40% when ap-
plying the ZOLC principle. Also, it can be concluded
that an uZOLC configuration is a good compromise for
most kernel benchmarks, especially those featuring fully-
nested loops where a single inner loop is of interest
for optimization. Overall, an average 17.5% performance
improvement is obtained with uZOLC.

To support our argument of ZOLC efficiency, we have
performed measurements on a representative processor
with native ZOL optimizations for single loops, namely
the LX 1.0 variant of the Xtensa family [7]. The Xtensa
compiler, xt-xcc, is based on gcc enhanced with a number
of extensions. The data-intensive kernels as well as 7
out of 10 application benchmarks were successfully com-
piled and ran with (-O3) and without ZOL support (-O3
-mno-zero-cost-loop) with both the automatic generation
of custom instructions turned on (-xpres) and off. The
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Benchmark Description . Dynamlc
instructions
Data-intensive kernels

fsme Full-search motion estimation 22,030,675

tssme Three-step logarithmic search motion 2,101,005
estimation

fsme_dr Full-search motion estimation with 13,052,691
data-reuse transformations

redct Row-column decomposition forward DCT 836,568

matmult Blocked matrix multiplication 374,355

edgedet Gradient-based edge detection 91,091

mc Motion compensation 113,382

kmpskip Knuth-Morris-Pratt string matching 30,437
algorithm

Ics Longest common substring search 1,313,236
algorithm

wsqc Wavelet-Scalar Quantization image 479,596
compression

Embedded applications

adpcm-encode Adaptive Differential Pulse Code Modulation 34,628,152
(ADPCM) encoder

adpcm-decode Adaptive Differential Pulse Code Modulation 27,256,674
(ADPCM) decoder

dijkstra Shortest path calculation between node pairs 59,354,952
with Dijkstra’s algorithm

rijndael-encode Advanced Encryption Standard encoder 33,697,370

rijndael-decode Advanced Encryption Standard decoder 34,666,810

sha Secure Hash Algorithm producing an 160-bit 13,036,406
message digest for a given input

stringsearch Case-insensitive string matching 279,725

susan-corners Corner detection with the SUSAN image 3,469,990
processing package

susan-edges Edge detection with the SUSAN image 6,898,760
processing package

susan-smoothing | Structure-preserving image noise reduction 35,331,316
with the SUSAN image processing package

performance results are illustrated in Fig. 10 alongside
the measurements for the ZOLC-enhanced XiRisc. It can
be seen that the performance speedups due to ZOL on
Xtensa are rather limited ranging from 3% to a maximum
of 7.5%. The main reason behind this is the inability of
exploiting an opportunity for ZOL when the relevant
code region incorporates conditional control flow. In
contrast to that, for the case of ZOLC, conditional control
flow in bwd tasks is directly supported. In some cases
(e.g. sha) the Xtensa ZOL may perform better than ZOLC,
however this is due to the more aggressive optimizations
applied by xt-xcc performs well, resulting in reduced
machine cycles for the DPTs of interest. Thus, a better
cycle benefit is obtained, assuming that the number of
cycles removed due to ZOLC is not affected.

Moreover, we have evaluated a few benchmarks em-
bodying regions of irreducible control flow: an im-
plementation of Duff’s device (duff) taken from the
WCETbench suite [36] and three variations of the basic
irreducible control flow graph discussed in [14] with
different DPT sizes, the latter coded in MIPS-I assembly.
Since current gcc-based compilers do not optimize over
such regions, no loop optimization is exploited for either
processor. For small DPT sizes, the performance benefits
from using ‘ZOLCfull’ are significant; if the DPT size
is increased to 10 instructions, the cycle advantage is
reduced, however it remains non-negligible as can be

seen by studying Table 5.

7.3 Experiments on a DSP ASIP

The portable RTL specification of ZOLC has been reused
in a cycle-accurate model for the hDSP in-house ASIP
written in ArchC [37]. Instruction-set extensions as the
“absolute value difference and accumulation” (dabsa) are
available on the hDSP in order to accelerate the execution
of performance-critical kernels, for example the SAD
criterion in motion estimation. The average basic block
and TCFG sizes were significantly reduced due to the
complex instructions.

A small set of 2 synthetic and 3 real kernels have been
examined for the hDSP, and the corresponding results
are shown in Table 6. The average task size and ZOLC
initialization cycles are also given. Performance speedup
was found at 44.15% in average for the real benchmarks,
while speedups of about 75% can be obtained for ex-
treme cases (loop4, loopS) of one useful computational
operation per task for the considered ASIP (looping
overhead instruction pattern executes in 4 cycles).

8 CONCLUSION

In this paper, a zero-overhead loop controller suited
to embedded RISC microprocessors is introduced. The
presented architecture is able to execute complex loop
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'ABLE 5: Performance results fo

instances of irre

ucible control flo

Cyc. with ZOL Cyc. without ZOL

Benchmark Description (ZOLC if MIPS-T) (ZOLC if MIPS-T) Yodiff
duff Duff’s device [36] on MIPS-I 1241 1750 29.1
duff Duff’s device [36] on Xtensa LX 1300 1300 0.0
bifg1 Irreducible CFG with DPT size = 1 12 64 81.25
bifgh Irreducible CFG with DPT size = 5 60 119 49.6
bifg10 Irreducible CFG with DPT size = 10 120 175 314
TABLE 6: Performance results for the examined applications.
Benchmark| Avg. task size Init. cycles C}éc(')]‘:vclth Cyc. without ZOLC Yodiff
loop4 1 48 12,786 52,092 75.45
loop8 1 92 1,368,237 5,658,686 75.82
fsme 2.3 58 51,791,075 76,144,025 31.98
matmult 1.6 47 5,184,473 8,992,559 42.35
fsme_dr 2.23 164 20,296,016 48,470,213 58.13
12 |BXRaefaut OZOLCIte DUZOLC BLX-XPRES MLX-XPRES-ZOL| they cannot be optimized by conventional compiler tech-
) - _ niques. Until now, the proposed mechanisms have been
Ik IH documented in VHDL, ArchC, and RTL pseudocode,
%87 IGIDE ([ ] extensive tests have been applied and performance mea-
061 e B surements have been obtained for representative target
047 (] (] applications. Overall, execution time improvements of
U.2r gl gl 255% and 44.1% have been observed for the XiRisc
O ‘ processor and an in-house ASIP, respectively. Finally, an
& & @@?‘ & Q\@\\ bf“\ & & & automated tool has been developed for constructing the
™ & .
® L ¥ TCFG of a loop structure and producing ZOLC-aware
code.
(@)
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