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Abstract

Multimedia algorithms in their majority consist of regular repetitive loop constructs. In this paper, a novel 

control  unit  design  for  implementing  such  loop  intensive  algorithms  is  described.  The  proposed 

architecture,  termed as zero-overhead loop controller (ZOLC) exploits the regularity of computations, 

which  is  a  common  characteristic  of  multimedia  algorithms  in  order  to  efficiently  support  the 

corresponding  datapaths.  The  ZOLC  controls  the  operations  in  datapath  modules  by 

activating/deactivating  their  corresponding  controlling  FSMs.  Algorithmic  flow dependencies,  which 

determine the appropriate loop sequencing are mapped on a look-up table (LUT). For another algorithm 

to execute, LUT context and FSM configurations only have to be reprogrammed, assuming a generic  

datapath.  Thus,  partial  reconfiguration  possibilities  for  implementing  multimedia  algorithms  on 

programmable platforms can be exploited. As proof-of-concept,  implementations of algorithms of the 

multimedia  domain  are  investigated  to  evaluate  the performance  of  the  proposed  unit,  against  other 

methods of control. Also, a full-search motion estimation processor employing the ZOLC is synthesized. 

It is proven that the ZOLC provides flexibility by supporting various algorithms of the multimedia field 

with performance improvements up to 2.1 over conventional control methods.
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1 Introduction

The  popularity  of  multimedia  systems  used  for  computing  and  exchanging  information  is  rapidly 

increasing.  Especially during the last  decade,  many computer  architectures  optimized for  multimedia 

processing  to  increase  the  performance  achievements  have  been  proposed.  Furthermore,  with  the 

emergence of portable multimedia applications (mobile phones, laptop computers, video cameras, etc) the 

power consumption has been promoted to a major design consideration [1]. Consequently, there is great 

need for power and performance optimized architectures that can introduce large savings compared to 

conventional approaches. 

Two general  implementation approaches  exist,  to meet  this demand.  The first  is  to  use general-

purpose  instruction  set  processors.  This  choice  offers  programmability  but  requires  increased  power 

while achieving relatively poor performance.  The second is to involve Application-Specific ICs (ASICs) 

or Application Specific Instruction set Processors (ASIPs)  to efficiently match the application profile. 

This  solution  leads  to  high  performance  and  reduced  power  consumption,  however  with  reduced 

flexibility. In recent work, research efforts focus on performance enhancing mechanisms either to provide 

efficient hardware support for overhead computations as address calculations, or to exploit the execution 

flow characteristics of the targeted applications for minimizing power and/or execution cycles due to 

branching operations [2]. 

In this work, an architectural solution named zero-overhead loop controller (ZOLC) is presented that 

can be used for eliminating the branching overheads in the execution of structured algorithms for any 

combination of loops. The novel characteristics are single-cycle branching against five or more cycles in  

general-purpose processors and flexibility compared to the limitations of controllers found in literature.  

For the loop statement indexing, initial, step and final values are kept in local register files and only a 

single process unit is employed for calculating the control schedule for the whole loop structure. As the  

controller runs, full access  to the values of the indices is provided, at any time, so that any function 

requirement, e.g. address generation, can be satisfied. Also loop statements with variable index bounds 

are supported. 

The remainder of this paper is organized as follows. Section 2 overviews previous research regarding 

the overhead operations related to looping. In  Section 3, the special  characteristics of the multimedia 

applications are studied. The zero-overhead loop controller  is  presented in Section 4.  Details  for  the 
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hardware design of case studies from the considered application set are given in Section 5. In Section 6, 

results against other control methods are unfolded. Finally, Section 7 summarizes the paper. 

2 Related work

In  recent  literature,  two different  approaches  for  treating  the  looping  overhead  in  signal  processing 

applications can be distinguished. The first one involves the use of a small instruction buffer or cache,  

respectively termed as loop buffer and loop cache, to hold frequently executed program loops. In the first  

pass of a loop, instructions from main memory are fetched, decoded and copied to the loop buffer, while 

in subsequent passes, the previously decoded instructions are used. When executing from the loop buffer, 

the program memory and instruction decoder can remain idle, which has a positive impact on the system  

power consumption [3],[4]. The second method regards reducing the cycle overheads due to looping by 

using either zero-overhead loop instructions or specialized hardware units employing control mechanisms 

for updating the index values and switching between loops. This concept can provide the means for better 

performance with expected gains in the system energy consumption.

Techniques that reside in the first category have been proposed in [5],[6],[7]. The loop cache fill 

mechanism is  controlled  by  either  a  state  machine  for  detecting  a  single  loop  [5]  or  a  stack-based 

controller supporting nested loops [7]. Generally, this method is not able to reduce total execution time,  

since  the  branch  instructions  cannot  be  surpassed.  However,  power  is  reduced  due  to  the  smaller 

capacitance switched when the accesses are made to the internal buffer layer.

The second approach is often encountered in commercial DSP processors [8],[9] where hardware 

mechanisms  are  provided  for  zero  overhead  switching  between  loops.  In  [10],  a  microprogrammed 

control unit that accounts for nested loops is presented, however performance comparison results against 

other  loop branching approaches  are  not mentioned for  any application. The DSP56300 [9] supports 

seven levels of nesting using a system stack. There is a 5-cycle overhead for preparing a loop for this type  

of hardware control, which may be important for small number of iterations or for linear loops placed at a  

certain nest level. In our work such overheads are eliminated.  

An alternative implementation is found in [2],[11] where a hardware unit is used to handle loop 

nesting up to five levels which suffices for the studied benchmarks. Its main advantage is that successive 

last iterations of nested loops are performed in a single cycle. In contrast to our approach, only fully-

nested structures are supported and the area requirements for handling the loop increment and branching 

operations  grow  proportionally  to  the  considered  number  of  loops  which  implies  high  levels  of 
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redundancy. In addition, the design complexity of the priority encoder that determines which of the loop 

counters to increment should exaggerate for a greater maximum number of loops. Also, this unit cannot 

be efficiently used with any datapath since a certain parallelism is assumed to perform several operations 

per cycle [11]. 

In our approach, a zero-overhead loop controller is presented for handling loop structures in a much 

more  efficient  way.  To  our  knowledge,  it  is  the  first  time  that  a  control  method  is  proposed  for  

accommodating complex loop structures with any combination of nested or linear loops. Only a single  

unit is utilized for calculating the indices for all loops present in the algorithm, instead of dedicated units 

for each loop resulting in significant area savings compared to [11]. The presented method can be applied 

to  loop  structures  with  loop  parameter  values  changing  at  run-time.  This  particular  case  cannot  be 

serviced  by any of  the previously discussed methods. With the proposed architecture  we succeed  in  

improving performance figures over other control methods under reasonable hardware cost.

3 Multimedia algorithm characteristics

Application programs of the multimedia domain spend about 90% of their execution time in small data-

processing kernels comprising of loop statements [12]. More complicated algorithmic structures are often 

the  outcome  of  the  application  of  transformations  on  the  multimedia  code.  A  methodology  for  the 

derivation of such transformations has been proposed in [13],[14] in order to reduce power consumption 

of data-dominated applications. These are data-reuse transformations that introduce additional loops in 

the  original  algorithm  code,  which  imply  the  existence  of  memory  hierarchy  layers  closer  to  the 

processor. 

A general form of a multimedia algorithm is shown in Fig. 1. It consists of a loop structure where  

data processing tasks are positioned. We distinguish two types of data processing tasks. The first type 

noted as star in Fig. 1 corresponds to tasks, at the innermost or closing position of a loop, with the final  

task, bwd0, marking the exiting position of the loop-intensive segment of the program. The loop indices 

are updated during the execution of these tasks, which are designated as backward (bwd) tasks. Bwd tasks 

are always situated in a loop terminating position even when no processing task is implied. Tasks of the 

second type are quoted with a circle and are placed in non-terminating positions of a loop. Such tasks are 

termed as forward (fwd), can take part in control flow decisions and have no effect on the loop indices. In  

a complete case when all possible tasks exist in an algorithm with n loops, there is a maximum of 2n+1 

total tasks. There may be up to n fwd tasks and n+1 bwd tasks. 
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From Fig. 1 it can be seen that a data processing task corresponds to a sequence of operations defined 

in  the  algorithm.  In  the  case  of  a  programmable  processor,  these  operations  are  implemented  as 

instructions, which can be single- or complex multi-cycle, as it is common for ASIPs. 

4 Architecture of the zero-overhead loop controller

4.1 Architecture template for implementing multimedia algorithms

A generic block diagram of the proposed architecture for implementing multimedia algorithms is shown 

in  Fig.  2.  On the  control  path,  reside  the  ZOLC  and  a  set  of  distributed  FSMs for  controlling  the  

execution of the data processing tasks of the algorithm on distributed datapath modules. A distributed 

topology is not mandatory, however, by its introduction, the applicability of our concept is even more 

understandable. 

The main task of the ZOLC is to direct the datapath controlling procedure so that the appropriate  

FSM undertakes control of the datapath. The ZOLC determines the current loop, activates the appropriate 

FSM and updates the loop indices. The task sequencing information is stored in a LUT. On completion of 

a data processing task, an entry is selected from the LUT to address the succeeding data processing task 

and the loop parameter blocks, based on which task has completed and the status of the current loop. The  

initial, final and step loop parameters are used to calculate the current index value and determine if a loop 

has  terminated.  By  employing  these  mechanisms,  the  cycle  overheads  regarding  task  switching  are 

eliminated. 

As shown in Fig. 2, the ZOLC uses the loop parameters and exploits loop dependencies described in 

the LUT, which is incorporated in the loop_count_unit, whereas the index_calculation_unit  updates the 

index values (indices). With the update of the final value of the current index, a loop termination signal  

(loop_end) is activated. The loop_end signal and the completion signal from the currently active FSM are 

involved in the activation procedure for the appropriate local FSM. 

   

4.2 Detailed view of the zero-overhead loop controller

A detailed block diagram of the ZOLC is shown in Fig.  3.  The loop parameters  are  stored in  their 

corresponding  memories.  These  are  available  to  the  for_structure_unit as  indicated  by  the  bold 

connection in Fig. 3, which combined with the index_control_unit and loop_end_mem register form the 
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index_calculation_unit. In the for_structure_unit the indices are calculated for the running loop. The loop 

sequencing information is mapped on the LUT placed in the loop_count_unit. The local FSMs to control 

the bwd and fwd tasks are positioned outside the ZOLC. To support an algorithm with loop parameters 

that are not statically determined, their updated values (initial_upd, step_upd, final_upd) are stored back 

in the respective storage modules as calculated at run-time. 

In Fig. 4, the address and data word formation of the LUT are given. A LUT data word consists of 

fields to specify a loop (loop_addr), identify the task type (FSMsel), and select the specific fwd FSM of a 

given loop (fwdsel), e.g. fwd1_0 or fwd1_1 in Fig. 1. The data word combined with gloop_end defines the 

next  address  word  to  the  LUT  and  selects  the  succeeding  task.  gloop_end is  generated  in  the 

loop_count_unit by ANDing the  loop_end signal, with bwd FSM termination signal (FSMbwd). When 

switching from a fwd task, the value of gloop_end is irrelevant.     

The for_structure_unit is exhibited in Fig. 5. This unit calculates the current index by adding the step 

to the initial or intermediate value. Index update is performed only on the completion of a bwd FSM.  

Multiplexers MUX1 and MUX2 are used for passing correctly the initial, or stepped values as needed.  

With the beginning of the execution of a task, the  loop_end signal applied to MUX2 passes the  initial 

value for the current loop and on the following iteration, the mux_sel signal on MUX1 activated by the 

index_control_unit, selects the initial to be added to the step value to produce the next index value. The 

operation of the index_control_unit is to acknowledge the status of the running loop to the for_structure. 

The following index values are computed by iteratively adding the  step value to these results. A local 

register file with one read and one write port stores the loop indices and is controlled by  load signal 

issued from the corresponding bwd FSM (its FSMbwd signal). In case multiple indices are needed during 

the same cycle for data or address computations, a register bank configuration can be used instead. The 

output of the comparator unit (loop_end_next) is active when the subsequent iteration value is the final 

for the specified loop. The  loop_end_next signal  is stored in the  loop_end_mem status register and is 

accessible as loop_end signal, on the following iteration of the same loop. 

The implementation of the task FSMs is not related to the design of the ZOLC. We have developed C 

or HDL models for these, to obtain execution performance measurements or logic synthesis metrics in 

Section 6.   

4.3 Description of the ZOLC generation tool

To execute a different algorithm implementation, the loop_count_unit, which is the only application-

dependent  component  of  the  ZOLC,  should  be  updated  with  the  corresponding  loop  sequencing 
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information. For this purpose, an automated generation tool has been created and is described in Fig. 6. 

This tool,  named  lcugen,  produces a synthesizable RTL description of the  loop_count_unit,  which is 

parameterized on the width of the LUT fields and can adjust its interface in case of fwd task control flow 

decisions or if the fwdsel field is not actually needed.  lcugen also generates the top-level VHDL model 

for the ZOLC, which only requires modifications according to the loop_count_unit interface signals. 

First, the control flow graph (CFG) of the application described in ANSI C is generated using the 

“do_il2cfg” pass of the MachSUIF compiler [15]. Then, natural loop analysis [16] is performed on the 

CFG using the control flow analysis library of MachSUIF, to extract the loops in the algorithm. The loop 

analysis report contains the loop nesting depth and three additional boolean flags for determining: a) if a 

loop begins at the specified node (begin_node), b) if a loop ends at the specified node (end_node), c) if an 

exit from the loop is possible from that node (exit_node). From these results, the control flow of the 

algorithm can be mapped to its data processing task graph (DPTG). Also, the user can specify with an 

annotation file, which tasks should be disregarded or implement loop entry decisions, and as a result the  

DPTG is correspondingly rearranged. 

lcugen generates a representation of the loop_count_unit by interpreting the edge list for the DPTG 

which is a weighted graph, in the following forms: the synthesizable VHDL code for the LUT, a visual 

representation  of  the  DPTG  in  VCG  format  [17]  or  the  FSM  implementation  for  the  entire 

loop_count_unit in VHDL. 

5 Case study algorithm implementations

The proposed architecture was used as the control unit for the implementation of the Full-Search Motion 

Estimation (fsmeorg) algorithm. ASIC-like design was used for the datapath units. Motion estimation is 

used in MPEG video compression [18] for removing the temporal redundancy in a video sequence, which 

is  determined  by  the  similarities  present  amongst  consecutive  pictures.  Compression  is  achieved  by 

encoding only the displacement values of pixel blocks (motion vectors) between successive frames. The 

calculation  of  the  motion  vector  is  performed  by means  of  a  matching or  distance  criterion,  a  cost  

function for minimizing the prediction error [19]. We adopt the Sum of Absolute Differences (SAD) 

computation since it is considered suitable for VLSI implementation. 

In addition to the  fsmeorg algorithm, an application set consisting of three more benchmarks was 

used for verification and also the performance evaluation of algorithm implementations using the ZOLC. 

A  dedicated  processor  for  full-search  motion  estimation  with  data-reuse  transformations  applied 
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(fsme_dr) was designed. Also, cycle-accurate C models incorporating the proposed ZOLC, based on the 

block-based matrix multiplication,  matmult, and the row-column decomposition DCT algorithm,  rcdct, 

implementations, were simulated to obtain performance results. For the fsmeorg and fsme_dr algorithms, 

the VHDL models  of  the  processors  were  also run  and  the actual  outputs  were  verified  against  the 

reference software implementations. 

5.1 Overview of the case study processors

In Fig. 7, the pseudocode of the fsmeorg algorithm is shown. It consists of three double nested for loops, 

that incorporate the data processing tasks of the algorithm. The outer (x,y) loops select the block from the 

current picture for which the minimum motion vector is calculated. By iterating the (i,j) couple, each time 

a reference block is selected from the reference window. Initially, the dist variable is cleared, in order to 

accumulate the distance metric for the selected block. For each position in the search region, the distance 

kernel is executed, and this is performed for all (k,l) pixels in the current picture block. 

Four distinct tasks are served in the algorithm flow, which are denoted as fwd2(0), fwd4(0), bwd4 and 

bwd6. The  fwd2(0) and  fwd4(0) tasks correspond to initializing the  min and  dist variables. Task  bwd6 

implements the SAD criterion by accumulating the absolute difference  of  two input pixels from the 

current picture and reference picture. In task bwd4, the SAD value is acclaimed as the new minimum if it 

is  smaller  than  the  current  value  stored  in  the  min register.  The  corresponding  (i,j)  determines  the 

reference block displacement and constitutes the associated motion vector.  

Regarding the other benchmarks,  fsme_dr  consists of a loop structure with 20 loops and contains 

forward tasks that implement control flow decisions. The matmult algorithm comprises of 5 fully nested 

loops and the rcdct has an aggregate of 18 loops, with a maximum loop depth of 5.   

A design for the motion estimation processor is implemented in order to show a complete case study 

that  uses  the  ZOLC.  It  is  not  our  intention  to  compare  this  rather  obvious  datapath  design  against  

optimized hardware solutions as those found in recent work on reconfigurable architectures for media 

processing  [20].  For  serving  the  data  processing  tasks  of  the  algorithm,  the  corresponding  local 

controlling FSMs and datapaths have been designed. The specific operations executed at each state of 

these FSMs are described in Table 1. 

An overall view of our motion estimator design is shown in Fig. 8. In the control path, the algorithm 

dependencies have been recorded as context information in the loop_count_unit of the ZOLC. The ZOLC 

provides the  FSMsel and  loop_addr signals that select the corresponding local controlling FSM for the 

specified data processing task (in this case, the  fwdsel signal is not needed). Also, the loop indices are 
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made available from the ZOLC to the single-cycle address_generator unit that is triggered by bwd4 and 

bwd6 FSMs to calculate source and destination pixel  addresses.  Input  data for the motion estimation 

kernel are read from the frame memories and fed to the SAD_and_minimum unit. Updated motion vectors 

are written back to the motion vector RAM blocks. 

The  fsme_dr  algorithm makes efficient use of a customized memory hierarchy to exploit temporal  

locality in the data accesses [13],[14]. As reported in [13],[14] the optimal memory hierarchy consists of  

two individual hierarchies for the current and reference picture memories. For the current picture, the 

current  block (CB) memory layer  is  introduced,  whereas  for  the reference picture,  the corresponding 

memory hierarchy incorporates memory layers for a reference window (RW), and a line of candidate 

blocks (PB line). This combination has been derived for a pre-characterized ASIC process based on a 

power-sensitive selection criterion. 

The application of the data-reuse transformations introduces 14 additional  loops in the algorithm 

description to form a total of 20 loops as shown in Fig. 9. The same architecture for the ZOLC is used as  

for the fsmeorg processor. Changes were only required for the contents and interface signals of the LUT. 

Also, additional tasks are involved compared to fsmeorg, that implement control-flow decisions as well as 

memory transfers from higher to lower memory layers (inter-copy reuse [13]) or in context of a single 

memory layer (intra-copy reuse).   

The datapath for the matmult and rcdct algorithms would be designed considering a similar interface 

to the ZOLC.   

6 Performance evaluation of the zero-overhead loop controller - 

Results

For the purpose of performance evaluation, we compare the efficiency of the ZOLC against five different 

control methods used for reducing looping overheads, which are indicated in Table 2.  It is assumed that 

these methods are applied to the same datapath specializations in order to generate comparable results.  

The overhead cost in cycles for implementing the looping was determined from the instruction cycle 

timings  reported  in  literature  for  all  the  considered  control  methods.  Data  and  control  hazards  are 

regarded as resolved which in fact favors all implementations except the ZOLC. Variation delay_slots has 

two architected delay slots, 100% utilized, while architecture branch_taken follows a branch taken policy 

with a misprediction cost of two cycles [12].  zol supports zero-overhead operation for innermost loops 

only [8]. A 2-cycle overhead is required for loading the loop counter register and setting up a block of 
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instructions or a single instruction for zero-overhead operation. For dsp56300 there is a 5-cycle overhead 

for preparing the program control unit modules to operate in zero-overhead mode [9]. mbreeze assumes 

that the looping hardware of [11] is used. A conservative estimate of a 100-cycle penalty is associated  

between the detection and start of a Breeze instruction [11]. In Table 2, the percentage increase in the 

number of cycles is given for the aforementioned control methods against  zolc.  zolc provides up to 2.1 

times better performance against these control architectures. Only mbreeze achieves similar performance 

figures to zolc, however zolc is more flexible and can be applied in a general context. 

The ZOLC and MediaBreeze  architectures  implement sequencers  for  loop-intensive applications, 

following  different  approaches:  ZOLC  stores  task  switching  context  in  a  LUT,  while  MediaBreeze 

interprets a special  instruction to accelerate a fully-nested loop computation. For this reason only the  

corresponding  modules  from  these  architectures  are  synthesized,  which  are  the  for_structure and 

MediaBreeze looping unit respectively,  to derive gate count and maximum clock frequency estimates. 

The remaining units cannot be directly compared since the complexity of several MediaBreeze units is 

not  detailed.  The  designs  are  targeted  to  the  TSMC  0.18um  standard  cell  library  using  the  

MentorGraphics’ LeonardoSpectrum tool. For the MediaBreeze hardware, a technology-optimized carry 

select adder is designed for both additions and increments. MediaBreeze supports looping only for zeroth 

initial and unitary step values, which implies that for most algorithms extensive modifications have to be 

applied on the application code.  

In  Table  3,  the  area  and  clock  frequency metrics  for  the  two architectures  are  contrasted  for  a  

maximum number of 5, 8 and 16 loops. The MediaBreeze looping unit requires twice the hardware cost 

of the for_structure, while providing lower performance than its register file configuration. If a register 

bank is used in our design, performance is decreased, since input demultiplexers are required for the write 

enable and write-back index signals and an output multiplexer for the intermediate index. A RAM-based 

register  file  consists  of  compact  six-transistor  cells  and  highly  optimized  decoding  logic,  while  not 

requiring additional  circuitry with the drawback of  providing a single index per  cycle.  Also, a  large 

amount of signals are decoded in the MediaBreeze instruction decoder, which may additionally degrade 

the looping unit timing characteristics.

Finally,  two versions of the ZOLC (one unpipelined and one with two-stage pipelining) and the 

complete processor for the fsmeorg application have been synthesized. Table 4 shows the corresponding 

metrics compared to ARM7TDMI and ARM946E synthesizable implementations [21]. The gate count is 

about 30K for the motion estimation processor excluding the frame and motion vector RAMs, which is  

significantly lower than of the ARM processors. A maximum clock frequency of 141MHz for the motion 
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estimation processor using the unpipelined implementation of the ZOLC is achieved, which compares to  

the 100MHz clock frequency of the ARM7 and 160MHz of the ARM9 processor. It should be noted that  

the motion estimator designs provide 7 to 12 times speedup in machine cycles against ARM7 due to fast  

address generation and elimination of branching overheads. For the ZOLC, the critical path was found to 

be that from the loop parameter RAMs, across the index_control and for_structure unit and terminating to 

the  loop_end_mem unit. It is quite satisfactory that the  loop_count_unit operates fast enough not to be 

included  in  the  critical  path  of  the  architecture.  Also,  the  ZOLC  can  be  further  pipelined  into  a 

loop_count_unit operation stage and an index update stage, and then the maximum clock frequency is  

increased to about 250MHz with a minimal additional cost in area.

7 Conclusions

In this paper, a zero-overhead loop controller for implementing multimedia algorithms is introduced. The 

special characteristics of loop-intensive algorithms are exploited in order to provide for efficient handling 

of the loop branching operations. The presented architecture is able to execute structured algorithms for 

any combination of loops, with no cycle overheads incurred for task switching. While it operates, indices 

of all loops are accessible so that data or address requirements can be satisfied. The proposed architecture 

is documented in VHDL and its cycle efficiency is tested against established methods of control. Also,  

hardware characteristics are compared against other specialized architectures for loop branching. Overall, 

performance  improvements  up  to  2.1  are  reported  against  other  methods  of  control  for  the  same 

datapaths. Finally, an automation tool has been implemented for generating the VHDL description for the 

entire ZOLC, adapted to the application in mind.
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Data-processing task State number Operations performed at specified state
fwd2(0) 1 Load initial value to min register
fwd4(0) 1 Clear dist register

bwd6

1 Address formation for the input and output data structures
2 Pixels p1, p2 are read from the frame memories

3
The absolute difference of p1, p2 is calculated and the

result is accumulated in dist register

bwd4
1 Comparison between the dist and min values
2 Store the corresponding motion vector

Table 1. Datapath operations per state for the local controlling FSMs of the fsmeorg application

Benchmark Description # cycles % increase in number of cycles compared to zolc
zolc delay_slots branch_taken zol dsp56300 mbreeze

fsmeorg Full-search motion estimation 70128467 41.01 42.48 6.10 8.09 -2.08

fsme_dr

Full-search motion estimation with 

data-reuse transformations 50759199 52.29 53.73 8.87 11.72 0.62
matmult Block-based matrix multiplication 1940451 50.18 52.98 18.77 22.52 -0.74
rcdct Row-column decomposition 2D-DCT 6565753 42.37 45.14 13.50 17.20 -1.19

Table 2. Performance comparison of the ZOLC against other control methods for the benchmarks
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Hardware unit Number of loops Number of gates Clock frequency
Mediabreeze looping 5 10837 279.7 MHz
Mediabreeze looping 8 17394 272.2 MHz
Mediabreeze looping 16 34807 233.5 MHz
for_structure (register bank) 5 6716 234.9 MHz
for_structure (register bank) 8 7827 223.7 MHz
for_structure (register bank) 16 14649 185.2 MHz
for_structure (register file) 16 3812 315.2 MHz

Table 3. Synthesis results for equivalent hardware blocks of the ZOLC unit and MediaBreeze architecture

Processor Technology Pipeline stages Number of gates Clock frequency
ARM7TDMI-S 0.18um 3 50K 100 MHz
ARM946E-S 0.18um 5 200K 160 MHz
zolc_unit TSMC 0.18um (6LM) 1 (no pipelining) 15176 164.3 MHz
zolc_unit_pipe TSMC 0.18um (6LM) 2 15669 253.5 MHz
fsmeorg processor TSMC 0.18um (6LM) 2 31818 141.4 MHz

Table 4. Synthesis results for the ZOLC and the entire processor for the fsmeorg application
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Figure 1. General form of a multimedia algorithm

Figure 2. General template of the proposed architecture for implementing multimedia algorithms
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Figure 3. Zero-overhead loop controller architecture

Figure 4. LUT address and data word formation
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Figure 5.  for_structure_unit block diagram
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Figure 6. Overview of the process for generating the loop_count_unit using the lcugen tool
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Figure 7. Pseudocode flow for the Full Search Motion Estimation algorithm
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Figure 8. Block diagram view of the motion estimation processor

21



Figure 9. Algorithmic flow for the fsmeorg algorithm after the application of data-reuse transformations
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