
Zero-overhead loop controller for implementing multimedia

algorithms

Nikolaos Kavvadias and Spiridon Nikolaidis

Section of Electronics and Computers, Department of Physics,

Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Email: nkavv@skiathos.physics.auth.gr

Abstract

Multimedia algorithms in their majority consist of regular repetitive loop constructs. In this paper, a novel

control unit design for implementing such loop intensive algorithms is described. The proposed

architecture, termed as zero-overhead loop controller (ZOLC) exploits the regularity of computations,

which is a common characteristic of multimedia algorithms in order to efficiently support the

corresponding datapaths. The ZOLC controls the operations in datapath modules by

activating/deactivating their corresponding controlling FSMs. Algorithmic flow dependencies, which

determine the appropriate loop sequencing are mapped on a look-up table (LUT). For another algorithm

to execute, LUT context and FSM configurations only have to be reprogrammed, assuming a generic

datapath. Thus, partial reconfiguration possibilities for implementing multimedia algorithms on

programmable platforms can be exploited. As proof-of-concept, implementations of algorithms of the

multimedia domain are investigated to evaluate the performance of the proposed unit, against other

methods of control. Also, a full-search motion estimation processor employing the ZOLC is synthesized.

It is proven that the ZOLC provides flexibility by supporting various algorithms of the multimedia field

with performance improvements up to 2.1 over conventional control methods.

1

1 Introduction

The popularity of multimedia systems used for computing and exchanging information is rapidly

increasing. Especially during the last decade, many computer architectures optimized for multimedia

processing to increase the performance achievements have been proposed. Furthermore, with the

emergence of portable multimedia applications (mobile phones, laptop computers, video cameras, etc) the

power consumption has been promoted to a major design consideration [1]. Consequently, there is great

need for power and performance optimized architectures that can introduce large savings compared to

conventional approaches.

Two general implementation approaches exist, to meet this demand. The first is to use general-

purpose instruction set processors. This choice offers programmability but requires increased power

while achieving relatively poor performance. The second is to involve Application-Specific ICs (ASICs)

or Application Specific Instruction set Processors (ASIPs) to efficiently match the application profile.

This solution leads to high performance and reduced power consumption, however with reduced

flexibility. In recent work, research efforts focus on performance enhancing mechanisms either to provide

efficient hardware support for overhead computations as address calculations, or to exploit the execution

flow characteristics of the targeted applications for minimizing power and/or execution cycles due to

branching operations [2].

In this work, an architectural solution named zero-overhead loop controller (ZOLC) is presented that

can be used for eliminating the branching overheads in the execution of structured algorithms for any

combination of loops. The novel characteristics are single-cycle branching against five or more cycles in

general-purpose processors and flexibility compared to the limitations of controllers found in literature.

For the loop statement indexing, initial, step and final values are kept in local register files and only a

single process unit is employed for calculating the control schedule for the whole loop structure. As the

controller runs, full access to the values of the indices is provided, at any time, so that any function

requirement, e.g. address generation, can be satisfied. Also loop statements with variable index bounds

are supported.

The remainder of this paper is organized as follows. Section 2 overviews previous research regarding

the overhead operations related to looping. In Section 3, the special characteristics of the multimedia

applications are studied. The zero-overhead loop controller is presented in Section 4. Details for the

2

hardware design of case studies from the considered application set are given in Section 5. In Section 6,

results against other control methods are unfolded. Finally, Section 7 summarizes the paper.

2 Related work

In recent literature, two different approaches for treating the looping overhead in signal processing

applications can be distinguished. The first one involves the use of a small instruction buffer or cache,

respectively termed as loop buffer and loop cache, to hold frequently executed program loops. In the first

pass of a loop, instructions from main memory are fetched, decoded and copied to the loop buffer, while

in subsequent passes, the previously decoded instructions are used. When executing from the loop buffer,

the program memory and instruction decoder can remain idle, which has a positive impact on the system

power consumption [3],[4]. The second method regards reducing the cycle overheads due to looping by

using either zero-overhead loop instructions or specialized hardware units employing control mechanisms

for updating the index values and switching between loops. This concept can provide the means for better

performance with expected gains in the system energy consumption.

Techniques that reside in the first category have been proposed in [5],[6],[7]. The loop cache fill

mechanism is controlled by either a state machine for detecting a single loop [5] or a stack-based

controller supporting nested loops [7]. Generally, this method is not able to reduce total execution time,

since the branch instructions cannot be surpassed. However, power is reduced due to the smaller

capacitance switched when the accesses are made to the internal buffer layer.

The second approach is often encountered in commercial DSP processors [8],[9] where hardware

mechanisms are provided for zero overhead switching between loops. In [10], a microprogrammed

control unit that accounts for nested loops is presented, however performance comparison results against

other loop branching approaches are not mentioned for any application. The DSP56300 [9] supports

seven levels of nesting using a system stack. There is a 5-cycle overhead for preparing a loop for this type

of hardware control, which may be important for small number of iterations or for linear loops placed at a

certain nest level. In our work such overheads are eliminated.

An alternative implementation is found in [2],[11] where a hardware unit is used to handle loop

nesting up to five levels which suffices for the studied benchmarks. Its main advantage is that successive

last iterations of nested loops are performed in a single cycle. In contrast to our approach, only fully-

nested structures are supported and the area requirements for handling the loop increment and branching

operations grow proportionally to the considered number of loops which implies high levels of

3

redundancy. In addition, the design complexity of the priority encoder that determines which of the loop

counters to increment should exaggerate for a greater maximum number of loops. Also, this unit cannot

be efficiently used with any datapath since a certain parallelism is assumed to perform several operations

per cycle [11].

In our approach, a zero-overhead loop controller is presented for handling loop structures in a much

more efficient way. To our knowledge, it is the first time that a control method is proposed for

accommodating complex loop structures with any combination of nested or linear loops. Only a single

unit is utilized for calculating the indices for all loops present in the algorithm, instead of dedicated units

for each loop resulting in significant area savings compared to [11]. The presented method can be applied

to loop structures with loop parameter values changing at run-time. This particular case cannot be

serviced by any of the previously discussed methods. With the proposed architecture we succeed in

improving performance figures over other control methods under reasonable hardware cost.

3 Multimedia algorithm characteristics

Application programs of the multimedia domain spend about 90% of their execution time in small data-

processing kernels comprising of loop statements [12]. More complicated algorithmic structures are often

the outcome of the application of transformations on the multimedia code. A methodology for the

derivation of such transformations has been proposed in [13],[14] in order to reduce power consumption

of data-dominated applications. These are data-reuse transformations that introduce additional loops in

the original algorithm code, which imply the existence of memory hierarchy layers closer to the

processor.

A general form of a multimedia algorithm is shown in Fig. 1. It consists of a loop structure where

data processing tasks are positioned. We distinguish two types of data processing tasks. The first type

noted as star in Fig. 1 corresponds to tasks, at the innermost or closing position of a loop, with the final

task, bwd0, marking the exiting position of the loop-intensive segment of the program. The loop indices

are updated during the execution of these tasks, which are designated as backward (bwd) tasks. Bwd tasks

are always situated in a loop terminating position even when no processing task is implied. Tasks of the

second type are quoted with a circle and are placed in non-terminating positions of a loop. Such tasks are

termed as forward (fwd), can take part in control flow decisions and have no effect on the loop indices. In

a complete case when all possible tasks exist in an algorithm with n loops, there is a maximum of 2n+1

total tasks. There may be up to n fwd tasks and n+1 bwd tasks.

4

From Fig. 1 it can be seen that a data processing task corresponds to a sequence of operations defined

in the algorithm. In the case of a programmable processor, these operations are implemented as

instructions, which can be single- or complex multi-cycle, as it is common for ASIPs.

4 Architecture of the zero-overhead loop controller

4.1 Architecture template for implementing multimedia algorithms

A generic block diagram of the proposed architecture for implementing multimedia algorithms is shown

in Fig. 2. On the control path, reside the ZOLC and a set of distributed FSMs for controlling the

execution of the data processing tasks of the algorithm on distributed datapath modules. A distributed

topology is not mandatory, however, by its introduction, the applicability of our concept is even more

understandable.

The main task of the ZOLC is to direct the datapath controlling procedure so that the appropriate

FSM undertakes control of the datapath. The ZOLC determines the current loop, activates the appropriate

FSM and updates the loop indices. The task sequencing information is stored in a LUT. On completion of

a data processing task, an entry is selected from the LUT to address the succeeding data processing task

and the loop parameter blocks, based on which task has completed and the status of the current loop. The

initial, final and step loop parameters are used to calculate the current index value and determine if a loop

has terminated. By employing these mechanisms, the cycle overheads regarding task switching are

eliminated.

As shown in Fig. 2, the ZOLC uses the loop parameters and exploits loop dependencies described in

the LUT, which is incorporated in the loop_count_unit, whereas the index_calculation_unit updates the

index values (indices). With the update of the final value of the current index, a loop termination signal

(loop_end) is activated. The loop_end signal and the completion signal from the currently active FSM are

involved in the activation procedure for the appropriate local FSM.

4.2 Detailed view of the zero-overhead loop controller

A detailed block diagram of the ZOLC is shown in Fig. 3. The loop parameters are stored in their

corresponding memories. These are available to the for_structure_unit as indicated by the bold

connection in Fig. 3, which combined with the index_control_unit and loop_end_mem register form the

5

index_calculation_unit. In the for_structure_unit the indices are calculated for the running loop. The loop

sequencing information is mapped on the LUT placed in the loop_count_unit. The local FSMs to control

the bwd and fwd tasks are positioned outside the ZOLC. To support an algorithm with loop parameters

that are not statically determined, their updated values (initial_upd, step_upd, final_upd) are stored back

in the respective storage modules as calculated at run-time.

In Fig. 4, the address and data word formation of the LUT are given. A LUT data word consists of

fields to specify a loop (loop_addr), identify the task type (FSMsel), and select the specific fwd FSM of a

given loop (fwdsel), e.g. fwd1_0 or fwd1_1 in Fig. 1. The data word combined with gloop_end defines the

next address word to the LUT and selects the succeeding task. gloop_end is generated in the

loop_count_unit by ANDing the loop_end signal, with bwd FSM termination signal (FSMbwd). When

switching from a fwd task, the value of gloop_end is irrelevant.

The for_structure_unit is exhibited in Fig. 5. This unit calculates the current index by adding the step

to the initial or intermediate value. Index update is performed only on the completion of a bwd FSM.

Multiplexers MUX1 and MUX2 are used for passing correctly the initial, or stepped values as needed.

With the beginning of the execution of a task, the loop_end signal applied to MUX2 passes the initial

value for the current loop and on the following iteration, the mux_sel signal on MUX1 activated by the

index_control_unit, selects the initial to be added to the step value to produce the next index value. The

operation of the index_control_unit is to acknowledge the status of the running loop to the for_structure.

The following index values are computed by iteratively adding the step value to these results. A local

register file with one read and one write port stores the loop indices and is controlled by load signal

issued from the corresponding bwd FSM (its FSMbwd signal). In case multiple indices are needed during

the same cycle for data or address computations, a register bank configuration can be used instead. The

output of the comparator unit (loop_end_next) is active when the subsequent iteration value is the final

for the specified loop. The loop_end_next signal is stored in the loop_end_mem status register and is

accessible as loop_end signal, on the following iteration of the same loop.

The implementation of the task FSMs is not related to the design of the ZOLC. We have developed C

or HDL models for these, to obtain execution performance measurements or logic synthesis metrics in

Section 6.

4.3 Description of the ZOLC generation tool

To execute a different algorithm implementation, the loop_count_unit, which is the only application-

dependent component of the ZOLC, should be updated with the corresponding loop sequencing

6

information. For this purpose, an automated generation tool has been created and is described in Fig. 6.

This tool, named lcugen, produces a synthesizable RTL description of the loop_count_unit, which is

parameterized on the width of the LUT fields and can adjust its interface in case of fwd task control flow

decisions or if the fwdsel field is not actually needed. lcugen also generates the top-level VHDL model

for the ZOLC, which only requires modifications according to the loop_count_unit interface signals.

First, the control flow graph (CFG) of the application described in ANSI C is generated using the

“do_il2cfg” pass of the MachSUIF compiler [15]. Then, natural loop analysis [16] is performed on the

CFG using the control flow analysis library of MachSUIF, to extract the loops in the algorithm. The loop

analysis report contains the loop nesting depth and three additional boolean flags for determining: a) if a

loop begins at the specified node (begin_node), b) if a loop ends at the specified node (end_node), c) if an

exit from the loop is possible from that node (exit_node). From these results, the control flow of the

algorithm can be mapped to its data processing task graph (DPTG). Also, the user can specify with an

annotation file, which tasks should be disregarded or implement loop entry decisions, and as a result the

DPTG is correspondingly rearranged.

lcugen generates a representation of the loop_count_unit by interpreting the edge list for the DPTG

which is a weighted graph, in the following forms: the synthesizable VHDL code for the LUT, a visual

representation of the DPTG in VCG format [17] or the FSM implementation for the entire

loop_count_unit in VHDL.

5 Case study algorithm implementations

The proposed architecture was used as the control unit for the implementation of the Full-Search Motion

Estimation (fsmeorg) algorithm. ASIC-like design was used for the datapath units. Motion estimation is

used in MPEG video compression [18] for removing the temporal redundancy in a video sequence, which

is determined by the similarities present amongst consecutive pictures. Compression is achieved by

encoding only the displacement values of pixel blocks (motion vectors) between successive frames. The

calculation of the motion vector is performed by means of a matching or distance criterion, a cost

function for minimizing the prediction error [19]. We adopt the Sum of Absolute Differences (SAD)

computation since it is considered suitable for VLSI implementation.

In addition to the fsmeorg algorithm, an application set consisting of three more benchmarks was

used for verification and also the performance evaluation of algorithm implementations using the ZOLC.

A dedicated processor for full-search motion estimation with data-reuse transformations applied

7

(fsme_dr) was designed. Also, cycle-accurate C models incorporating the proposed ZOLC, based on the

block-based matrix multiplication, matmult, and the row-column decomposition DCT algorithm, rcdct,

implementations, were simulated to obtain performance results. For the fsmeorg and fsme_dr algorithms,

the VHDL models of the processors were also run and the actual outputs were verified against the

reference software implementations.

5.1 Overview of the case study processors

In Fig. 7, the pseudocode of the fsmeorg algorithm is shown. It consists of three double nested for loops,

that incorporate the data processing tasks of the algorithm. The outer (x,y) loops select the block from the

current picture for which the minimum motion vector is calculated. By iterating the (i,j) couple, each time

a reference block is selected from the reference window. Initially, the dist variable is cleared, in order to

accumulate the distance metric for the selected block. For each position in the search region, the distance

kernel is executed, and this is performed for all (k,l) pixels in the current picture block.

Four distinct tasks are served in the algorithm flow, which are denoted as fwd2(0), fwd4(0), bwd4 and

bwd6. The fwd2(0) and fwd4(0) tasks correspond to initializing the min and dist variables. Task bwd6

implements the SAD criterion by accumulating the absolute difference of two input pixels from the

current picture and reference picture. In task bwd4, the SAD value is acclaimed as the new minimum if it

is smaller than the current value stored in the min register. The corresponding (i,j) determines the

reference block displacement and constitutes the associated motion vector.

Regarding the other benchmarks, fsme_dr consists of a loop structure with 20 loops and contains

forward tasks that implement control flow decisions. The matmult algorithm comprises of 5 fully nested

loops and the rcdct has an aggregate of 18 loops, with a maximum loop depth of 5.

A design for the motion estimation processor is implemented in order to show a complete case study

that uses the ZOLC. It is not our intention to compare this rather obvious datapath design against

optimized hardware solutions as those found in recent work on reconfigurable architectures for media

processing [20]. For serving the data processing tasks of the algorithm, the corresponding local

controlling FSMs and datapaths have been designed. The specific operations executed at each state of

these FSMs are described in Table 1.

An overall view of our motion estimator design is shown in Fig. 8. In the control path, the algorithm

dependencies have been recorded as context information in the loop_count_unit of the ZOLC. The ZOLC

provides the FSMsel and loop_addr signals that select the corresponding local controlling FSM for the

specified data processing task (in this case, the fwdsel signal is not needed). Also, the loop indices are

8

made available from the ZOLC to the single-cycle address_generator unit that is triggered by bwd4 and

bwd6 FSMs to calculate source and destination pixel addresses. Input data for the motion estimation

kernel are read from the frame memories and fed to the SAD_and_minimum unit. Updated motion vectors

are written back to the motion vector RAM blocks.

The fsme_dr algorithm makes efficient use of a customized memory hierarchy to exploit temporal

locality in the data accesses [13],[14]. As reported in [13],[14] the optimal memory hierarchy consists of

two individual hierarchies for the current and reference picture memories. For the current picture, the

current block (CB) memory layer is introduced, whereas for the reference picture, the corresponding

memory hierarchy incorporates memory layers for a reference window (RW), and a line of candidate

blocks (PB line). This combination has been derived for a pre-characterized ASIC process based on a

power-sensitive selection criterion.

The application of the data-reuse transformations introduces 14 additional loops in the algorithm

description to form a total of 20 loops as shown in Fig. 9. The same architecture for the ZOLC is used as

for the fsmeorg processor. Changes were only required for the contents and interface signals of the LUT.

Also, additional tasks are involved compared to fsmeorg, that implement control-flow decisions as well as

memory transfers from higher to lower memory layers (inter-copy reuse [13]) or in context of a single

memory layer (intra-copy reuse).

The datapath for the matmult and rcdct algorithms would be designed considering a similar interface

to the ZOLC.

6 Performance evaluation of the zero-overhead loop controller -

Results

For the purpose of performance evaluation, we compare the efficiency of the ZOLC against five different

control methods used for reducing looping overheads, which are indicated in Table 2. It is assumed that

these methods are applied to the same datapath specializations in order to generate comparable results.

The overhead cost in cycles for implementing the looping was determined from the instruction cycle

timings reported in literature for all the considered control methods. Data and control hazards are

regarded as resolved which in fact favors all implementations except the ZOLC. Variation delay_slots has

two architected delay slots, 100% utilized, while architecture branch_taken follows a branch taken policy

with a misprediction cost of two cycles [12]. zol supports zero-overhead operation for innermost loops

only [8]. A 2-cycle overhead is required for loading the loop counter register and setting up a block of

9

instructions or a single instruction for zero-overhead operation. For dsp56300 there is a 5-cycle overhead

for preparing the program control unit modules to operate in zero-overhead mode [9]. mbreeze assumes

that the looping hardware of [11] is used. A conservative estimate of a 100-cycle penalty is associated

between the detection and start of a Breeze instruction [11]. In Table 2, the percentage increase in the

number of cycles is given for the aforementioned control methods against zolc. zolc provides up to 2.1

times better performance against these control architectures. Only mbreeze achieves similar performance

figures to zolc, however zolc is more flexible and can be applied in a general context.

The ZOLC and MediaBreeze architectures implement sequencers for loop-intensive applications,

following different approaches: ZOLC stores task switching context in a LUT, while MediaBreeze

interprets a special instruction to accelerate a fully-nested loop computation. For this reason only the

corresponding modules from these architectures are synthesized, which are the for_structure and

MediaBreeze looping unit respectively, to derive gate count and maximum clock frequency estimates.

The remaining units cannot be directly compared since the complexity of several MediaBreeze units is

not detailed. The designs are targeted to the TSMC 0.18um standard cell library using the

MentorGraphics’ LeonardoSpectrum tool. For the MediaBreeze hardware, a technology-optimized carry

select adder is designed for both additions and increments. MediaBreeze supports looping only for zeroth

initial and unitary step values, which implies that for most algorithms extensive modifications have to be

applied on the application code.

In Table 3, the area and clock frequency metrics for the two architectures are contrasted for a

maximum number of 5, 8 and 16 loops. The MediaBreeze looping unit requires twice the hardware cost

of the for_structure, while providing lower performance than its register file configuration. If a register

bank is used in our design, performance is decreased, since input demultiplexers are required for the write

enable and write-back index signals and an output multiplexer for the intermediate index. A RAM-based

register file consists of compact six-transistor cells and highly optimized decoding logic, while not

requiring additional circuitry with the drawback of providing a single index per cycle. Also, a large

amount of signals are decoded in the MediaBreeze instruction decoder, which may additionally degrade

the looping unit timing characteristics.

Finally, two versions of the ZOLC (one unpipelined and one with two-stage pipelining) and the

complete processor for the fsmeorg application have been synthesized. Table 4 shows the corresponding

metrics compared to ARM7TDMI and ARM946E synthesizable implementations [21]. The gate count is

about 30K for the motion estimation processor excluding the frame and motion vector RAMs, which is

significantly lower than of the ARM processors. A maximum clock frequency of 141MHz for the motion

10

estimation processor using the unpipelined implementation of the ZOLC is achieved, which compares to

the 100MHz clock frequency of the ARM7 and 160MHz of the ARM9 processor. It should be noted that

the motion estimator designs provide 7 to 12 times speedup in machine cycles against ARM7 due to fast

address generation and elimination of branching overheads. For the ZOLC, the critical path was found to

be that from the loop parameter RAMs, across the index_control and for_structure unit and terminating to

the loop_end_mem unit. It is quite satisfactory that the loop_count_unit operates fast enough not to be

included in the critical path of the architecture. Also, the ZOLC can be further pipelined into a

loop_count_unit operation stage and an index update stage, and then the maximum clock frequency is

increased to about 250MHz with a minimal additional cost in area.

7 Conclusions

In this paper, a zero-overhead loop controller for implementing multimedia algorithms is introduced. The

special characteristics of loop-intensive algorithms are exploited in order to provide for efficient handling

of the loop branching operations. The presented architecture is able to execute structured algorithms for

any combination of loops, with no cycle overheads incurred for task switching. While it operates, indices

of all loops are accessible so that data or address requirements can be satisfied. The proposed architecture

is documented in VHDL and its cycle efficiency is tested against established methods of control. Also,

hardware characteristics are compared against other specialized architectures for loop branching. Overall,

performance improvements up to 2.1 are reported against other methods of control for the same

datapaths. Finally, an automation tool has been implemented for generating the VHDL description for the

entire ZOLC, adapted to the application in mind.

References

[1] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic

Publishers, Boston, 1995.

[2] D. Talla, L. K. John, and D. Burger, “Bottlenecks in Multimedia Processing with SIMD Style

Extensions and Architectural Enhancements,” IEEE Transactions on Computers, Vol. 52, No. 8, pp.

1015-1031, August 2003.

[3] R. S. Bajwa, M. Hiraki, H. Kosima, D. J. Gorny, A. Shridhar, K. Seki, and K. Sasaki, “Instruction

Buffering to Reduce Power in Processors for Signal Processing,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 5, No. 4, pp. 417-425, December 1997.

11

[4] N. Bellas, I. N. Hajj, C. D. Polychronopoulos, and G. Stamoulis, “Architectural and Compiler

Techniques for Energy Reduction in High-Performance Microprocessors,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol. 8, No. 3, pp. 317-326, June 2000.

[5] L. H. Lee, W. Moyer, and J. Arends, “Instruction Fetch Energy Reduction Using Loop Caches For

Embedded Applications with Small Tight Loops,” Proceedings of the International Symposium on

Low Power Electronics and Design, August 1999, San Diego, CA.

[6] A. Gordon-Ross, S. Cotterell, and F. Vahid, “Exploiting Fixed Programs in Embedded Systems: A

Loop Cache Example,” IEEE Computer Architecture Letters, January 2002.

[7] C. T. Wu and T. T. Hwang, “Instruction Buffering for Nested Loops in Low Power Design,”

Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), 26-29 May

2002, Scottsdale Princess Resort, Scottsdale, Arizona.

[8] G.-R. Uh, Y. Wang, D. Whalley, S. Jinturkar, C. Burns and V. Cao, “Effective Exploitation of a Zero

Overhead Loop Buffer,” ACM SIGPLAN Workshop on Languages, Compilers and Tools for

Embedded Systems (LCTES’99), pp. 10-19, May 1999, Atlanta, USA.

[9] Motorola Inc., DSP56300 24-Bit Digital Signal Processor Family Manual, Revision 3.0, December

2000.

[10] B. W. Bomar, “Implementation of Microprogrammed Control in FPGAs,” IEEE Transactions on

Industrial Electronics, Vol. 49, No. 2, pp. 415-422, April 2002.

[11] D. Talla, “Architectural Techniques to Accelerate Multimedia Applications on General-Purpose

Processors,” Ph.D. thesis, University of Texas at Austin, August 2001.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 2nd edition,

Morgan Kaufmann Publishers Inc., San Francisco, CA, 1996.

[13] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle, Custom

Memory Management Methodology, Kluwer Academic Publishers, Boston, 1998.

[14] S. Kougia, A. Chatzigeorgiou, N. Zervas and S. Nikolaidis, “Analytical Exploration of Power

Efficient Data-reuse Transformations on Multimedia,” International Conference on Acoustics,

Speech and Signal Processing, Utah, May 2001.

[15] M. D. Smith and G. Holloway, “An Introduction to Machine SUIF and its Portable Libraries for

Analysis and Optimization,” Technical report, Harvard University, Cambridge, MA, 2000.

[16] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools, Addison-

Wesley, Reading, MA, 1986.

12

[17] G. Sander, “Graph layout through the VCG tool,” Technical Report Sep 26-34, Technical University

of Munich, September 26, 1995.

[18] International Organization of Standardization, Working Group on Coding of Moving Pictures and

Audio, MPEG-4 Video Verification Model Version 18.0, Pisa, January 2001.

[19] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation,

Kluwer Academic Publishers, Boston, 1999.

[20] S. Wong, S. Vassiliadis, and S. Cotofana, “SAD implementation in FPGA hardware,” in Proceedings

of the 12th Annual Workshop on Circuits, Systems, and Signal Processing (PRORISC2001), 2001.

[21] ARM Ltd., http://www.arm.com

Data-processing task State number Operations performed at specified state
fwd2(0) 1 Load initial value to min register
fwd4(0) 1 Clear dist register

bwd6

1 Address formation for the input and output data structures
2 Pixels p1, p2 are read from the frame memories

3
The absolute difference of p1, p2 is calculated and the

result is accumulated in dist register

bwd4
1 Comparison between the dist and min values
2 Store the corresponding motion vector

Table 1. Datapath operations per state for the local controlling FSMs of the fsmeorg application

Benchmark Description # cycles % increase in number of cycles compared to zolc
zolc delay_slots branch_taken zol dsp56300 mbreeze

fsmeorg Full-search motion estimation 70128467 41.01 42.48 6.10 8.09 -2.08

fsme_dr

Full-search motion estimation with

data-reuse transformations 50759199 52.29 53.73 8.87 11.72 0.62
matmult Block-based matrix multiplication 1940451 50.18 52.98 18.77 22.52 -0.74
rcdct Row-column decomposition 2D-DCT 6565753 42.37 45.14 13.50 17.20 -1.19

Table 2. Performance comparison of the ZOLC against other control methods for the benchmarks

13

Hardware unit Number of loops Number of gates Clock frequency
Mediabreeze looping 5 10837 279.7 MHz
Mediabreeze looping 8 17394 272.2 MHz
Mediabreeze looping 16 34807 233.5 MHz
for_structure (register bank) 5 6716 234.9 MHz
for_structure (register bank) 8 7827 223.7 MHz
for_structure (register bank) 16 14649 185.2 MHz
for_structure (register file) 16 3812 315.2 MHz

Table 3. Synthesis results for equivalent hardware blocks of the ZOLC unit and MediaBreeze architecture

Processor Technology Pipeline stages Number of gates Clock frequency
ARM7TDMI-S 0.18um 3 50K 100 MHz
ARM946E-S 0.18um 5 200K 160 MHz
zolc_unit TSMC 0.18um (6LM) 1 (no pipelining) 15176 164.3 MHz
zolc_unit_pipe TSMC 0.18um (6LM) 2 15669 253.5 MHz
fsmeorg processor TSMC 0.18um (6LM) 2 31818 141.4 MHz

Table 4. Synthesis results for the ZOLC and the entire processor for the fsmeorg application

14

List of Figures

Figure 1.General form of a multimedia algorithm ... 16

Figure 2.General template of the proposed architecture for implementing multimedia algorithms 16

Figure 3.Zero-overhead loop controller architecture ... 17

 ... 17

Figure 4.LUT address and data word formation .. 17

Figure 5. for_structure_unit block diagram ... 18

Figure 6.Overview of the process for generating the loop_count_unit using the lcugen tool 19

Figure 7.Pseudocode flow for the Full Search Motion Estimation algorithm ... 20

Figure 8.Block diagram view of the motion estimation processor .. 21

Figure 9.Algorithmic flow for the fsmeorg algorithm after the application of data-reuse transformations 22

15

Figure 1. General form of a multimedia algorithm

Figure 2. General template of the proposed architecture for implementing multimedia algorithms

16

Figure 3. Zero-overhead loop controller architecture

Figure 4. LUT address and data word formation

17

Figure 5. for_structure_unit block diagram

18

Figure 6. Overview of the process for generating the loop_count_unit using the lcugen tool

19

Figure 7. Pseudocode flow for the Full Search Motion Estimation algorithm

20

Figure 8. Block diagram view of the motion estimation processor

21

Figure 9. Algorithmic flow for the fsmeorg algorithm after the application of data-reuse transformations

22

	Zero-overhead loop controller for implementing multimedia algorithms
	Abstract
	1 Introduction
	2 Related work
	3 Multimedia algorithm characteristics
	4 Architecture of the zero-overhead loop controller
	4.1 Architecture template for implementing multimedia algorithms
	4.2 Detailed view of the zero-overhead loop controller
	4.3 Description of the ZOLC generation tool

	5 Case study algorithm implementations
	5.1 Overview of the case study processors

	6 Performance evaluation of the zero-overhead loop controller - Results
	7 Conclusions
	References
	List of Figures

