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Abstract— ASIP processors are tuned for optimized map-
ping of narrow application sets in heterogeneous platforms.
Their successful development relies on compiler-based de-
sign space exploration. The careful design of the compiler
intermediate language is a necessity, due to its dual purpose
as both the program representation and an abstract target
machine. Its design affects the complexity, efficiency and ease
of maintenance of all compilation phases.

In this work, an extensible typed assembly intermediate
language, NAC, is presented. It can be used for processor ex-
ploration, optimizing intermediate representation (IR) trans-
formations and SSA compilation. Minimal SSA construction
algorithms are thoroughly presented for the first time.1
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1. Introduction and related work
Recent compilation frameworks provide linear IRs for

applying analyses, optimizations and as input for backend
code generation. GCC [1] supports the GIMPLE IR. Many
GCC optimizations have been rewritten for GIMPLE, but
it is still undergoing grammar and interface changes. GCC
supports backends for ASIP processors such as baseline
Xtensa [2] but it is not suitable for rapid retargeting to
non-trivial architectures. LLVM [3] uses a register-based
IR named LLVM bitcode, targeted by a C/C++ companion
frontend (clang). It is written in better coding style than
GCC, but similarly the IR infrastructure and semantics are
excessive.

In this paper, the NAC (N-Address Code) IR is introduced.
NAC supports semantic-freen-input/m-output mappings,
user-defined data types, and specifies a virtual machine
architecture. NAC’s strength is its simplicity: it is inherently
easy to develop a CDFG (Control/Data Flow Graph) extrac-
tion API, apply graph-based IR transformations for domain
specialization, investigate SSA (Static Single Assignment)
construction algorithms and perform other compilation tasks
for ASIPs.

Specifically, this paper investigates minimal SSA con-
struction schemes [4], [5] that don’t require the computation
of the iterated dominance frontier [6]. For the first time, de-
tailed implementations are illustrated to ease their adoption
in new projects.

1The presented research work was co-funded by the European
Union in the frame of the ENOSYS project (FP7-ICT-248821) (www.
enosys-project.eu).

2. Representing programs in NAC

In this section, the NAC typed-assembly language is de-
scribed. NAC provides arbitraryn-to-m mappings allowing
the elimination of implicit side-effects, a single construct
for all operations, and bit-accurate data types. It supports
scalar, single-dimensional array and streamed I/O procedure
arguments. NAC statements are labels,n-address instructions
or procedure calls.

An n-address instruction is actually the specification
of a mapping from a set ofn ordered inputs to a set of
m ordered outputs. Also termed as(n,m)-operation, it is
formatted as follows:
outp1, ..., outpm <= op inp1, ..., inpn;

where: op is a mnemonic referring to an IR instruction,
inp1, ..., inpn are itsn inputs, andoutp1, ..., outpm
its m outputs.

All declared objects have an explicit static type spec-
ification: “globalvar” (a global scalar or array variable),
“localvar” (a scalar or array local), “in” (an input argument
to the given procedure), or “out” (an output argument).

NAC supports bit-accurate data types for (signed/un-
signed) integer/fixed-point and floating-point arithmetic.
Data type specifications are essentially strings that can be
easily decoded by a regular expression scanner; typical
examples areu32, s11, q4.4u, q2.14s, f1.8.23, re-
spectively.

The EBNF grammar for NAC is shown in Fig. 1 where it
can be seen that rules “nac” and “pcall” provide the means
for then-to-m generic mapping for operations and procedure
calls, respectively. It is important to note that NAC has
no predefined operator set; operators are defined through a
textual mnemonic.

For instance, an addition of two scalar operands is written
as: a <= add b, c;. Control-transfer operations include
conditional and unconditional jumps explicitly visible inthe
IR. An example of an unconditional jump would be:BB5 <=

jmpun; while conditional jumps always declare both targets:
BB1, BB2 <= jmpeq i, 10;. This statement enables a
control transfer to the entry of basic block BB1 wheni
equals to 10, otherwise to BB2.

Procedures are supported as non-atomic operations by
using a similar form to operations. In(y) <= sqrt(x);

the square root of an operandx is computed; procedure
argument lists are indicated as enclosed in parentheses.



nac_top = {gvar_def} {proc_def}.
gvar_def = "globalvar" anum decl_item_lst ";".
proc_def = "procedure" [anum] "(" [arg_lst] ")"

"{" [{lvar_decl}] [{stmt}] "}".
stmt = nac | pcall | id ":".
nac = [id_lst "<="] anum [id_lst] ";".
pcall = ["(" id_lst ")" "<="] anum ["(" id_lst ")"] ";".
id_lst = id {"," id}.
decl_item_lst = decl_item {"," decl_item}.
decl_item = (anum | uninitarr | initarr).
arg_lst = arg_decl {"," arg_decl}.
arg_decl = ("in" | "out") anum (anum | uninitarr).
lvar_decl = "localvar" anum decl_item_lst ";".
initarr = anum "[" id "]" "=" "{" numer {"," numer} "}".
uninitarr = anum "[" [id] "]".
anum = (letter | "_") {letter | digit}.
id = anum | (["-"] (integer | fxpnum)).

Fig. 1: EBNF grammar for NAC (N-Address Code).

Table 1: A set of basic operations for a NAC-based IR.
Mnemonic Description (Ni, No)
ldc Load constant (1,1)
neg, mov Unary arithmetic op. (1,1)
add, sub, abs, min, max, Binary arithmetic op. (2,1)
mul, div, mod, shl, shr
not, and, ior, xor Logical (2,1)
setzz Comparison forzz: (2,1)

(eq,ne,lt,le,gt,ge)
muxzz Conditional selection (3,1)
load, store Load/Store from/to

mem.
(2,1)

sxt, zxt, trunc Type conversion (1,1)
jmpun Unconditional jump (0,1)
jmpzz Conditional jump (2,2)

2.1 Encoding NAC information
A NAC program incorporates the complete information

of a translation unit of the original program comprising of
a “globalvar” definition list and a procedure list. A single
NAC procedure is defined by the following set of lists:
ordered input (output) arguments, “localvar” definitions,
NAC statements and basic block (BB) labels.

Statements are organized in the form of a record. Lists
opnds_inand opnds_outcollect operand items, following
the definition of an “OperandItem” record. This record is
comprised of an identifier name, a data type specification,
an operand type (otype) representation and an absolute
operand item index.otype can take one of the following
values: {INARG, OUTARG, LOCALVAR, GLOBALVAR,
CONSTANT} and {INVAR, OUTVAR} as an additional
def/use specifier for NAC statements.

3. Uses and extensions of NAC
3.1 A basic NAC implementation

A basic operation set for RISC compilation is summarized
in Table 1.Ni (No) denotes the number of input (output)
operands for each operation.

The memory access model defines dedicated address
spaces per array, so that both loads and stores require the
array identifier as an explicit operand. For an indexed load
in C (b = a[i];), a frontend would generate the following

Table 2: CI characteristics for hand-optimized ANSI C
implementations ofcrcspandcrcdp.

GA
operator

Bit-level
oper. Ni/No

Cycles
(seq.)

CI
cycles

CI area
(MAU)

crcsp No/Yes 4/1 76-13 – –
crcsp No/Yes 8/1 41-6 3-1 0.977-0.142
crcsp No/Yes 8/2 5-1 3-1 1.867-0.153
crcdp No/Yes 4/1 111-18 – –
crcdp No/Yes 8/1 58-8 3-1 1.466-0.147
crcdp No/Yes 8/2 5-1 3-1 2.800-0.164

NAC: b <= load a, i;, while for an indexed store (a[i]
= b;) it is a <= store b, i;.

3.2 IR extensions
We have defined three custom IR operators,bitins,

bitext andconcat, for bitfield insertion/extraction from
a word and concatenation of two or more subwords. As
motivational examples, the single- (crcsp) and double-point
(crcdp) crossover operators are examined. C code for the
genetic algorithm operators was passed to Machine-SUIF
[7] for IR generation using a peephole matching-based code
selection pass for the ByoRISC ASIP [8]. ByoRISC supports
CIs with up to 8 inputs and 8 outputs.

crcsp reads four inputs: two parent chromosomes (father,
mother), crossover point (location), and chromosome length
(len) and produces two independent outputs; the (son, daugh-
ter) chromosomes for the next generation.crcdpdefines two
crossover points for bitfield exchange.

In Table 2, with bit-level operators unused, the minimum
number of cycles required forcrcspare 76 for a sequential
schedule and 12 for an ASAP, while for thecrcdp these
limits are 111 and 14, respectively. When the bit-level oper-
ators are used, the sequential schedules without CIs require
13 and 18 cycles forcrcspandcrcdprespectively with ASAP
schedules of 5 cycles for both. When theNi/No = {8/2}
constraint is used, a single-cycle multi-input, multi-output
(MIMO) CI is identified for each crossover operator. The
area requirement is estimated relatively to the area (multi-
plier area unit or MAU) of a 32-bit single-cycle multiplier
characterized for a Virtex-4 FPGA (XC4VLX25).

3.3 CDFG construction
A novel, fast CDFG construction algorithm has been

devised for both SSA and non-SSA NAC forms producing
flat CDFGs (Fig. 2). A CDFG symbol table item is a node
(operation, procedure call, globalvar, or constant) or edge
(localvar) with user-defined attributes: the unique name,
label and data type specification; node and edge type enu-
meration; respective order of incoming or outgoing edges;
input/output argument order of a node and BB index. Further
attributes can be defined, e.g. for scheduling bookkeeping.

3.4 Application profiling with NACVM
NAC programs can be either interpreted or translated to

low-level C for performance evaluation on the corresponding



NACtoCDFG()
input List NACs, List variables, List labels, Graph cfg;
output SymbolTable st, Graph cdfg;

begin
Insert constant, input/output arguments and global
variable operand nodes to st;
Insert operation nodes;
Insert incoming {global/constant/input, operation} and
outgoing {operation, global/output} edges;
Add control-dependence edges among operation nodes;
Add data-dependence edges among operation nodes,
extract loop-carried dependencies via cfg reachability;
Generate cdfg from st;

end

Fig. 2: CDFG construction algorithm accepting NAC input.

Table 3: Application profiling with a NAC framework.
App. LOC LOC P /V /E #φs #Instr.

(NAC) (dot)
atsort 155 484 2/136/336 10 6907
coins 105 509 2/121/376 10 405726
cordic 56 178 1/57/115 7 256335
easter 47 111 1/46/59 2 3082
fixsqrt 32 87 1/29/52 6 833900
perfect 31 65 1/23/36 4 6590739
sieve 82 199 2/64/123 12 515687
xorshift 26 80 1/29/45 0 2000

abstract machine, NACVM. A set of realistic kernels has
been selected:atsort (an all topological sorts algorithm
by Knuth), coins (compute change with minimum amount
of coins), multimodecordic computation,easter (Easter
date calculations),fixsqrt (fixed-point sqrt),perfect (perfect
number detection),sieve(prime sieve of Eratosthenes) and
xorshift (100 calls to G. Marsaglia’s PRNG).

Static and dynamic metrics have been collected in Table 3.
For each application (App.), the lines of NAC and resulting
CDFGs are given in columns 2-3, number of CDFGs (P :
procedures), vertices and edges (for each procedure) in
column 4, amount ofφ statements (column 5) and lastly
the number of dynamic instructions for the non-SSA case.

4. SSA construction algorithms
This paper argues that rapid prototyping compilers, would

benefit from straightforward SSA construction schemes
which don’t require the use of sophisticated concepts and
data structures [4], [5].

Algorithm P presents a “really-crude” approach for vari-
able renaming andφ-function insertion [4]. In the first phase,
every variable is split at BB boundaries, while in the second
phaseφ-functions are placed for each variable in each BB.
Variable versions are actually preassigned in constant time
and reflect a specific BB ordering (e.g. DFS). Thus, variable
versioning starts from a positive integern, equal to the
number of BBs in the given CFG.

Algorithm H does not predetermine variable versions at
control-flow joins but accountsφs the same way as actual
computations visible in the original CFG. Due to this fact,
φ-insertion also presents dissimilarities. Both methods share
commonφ-minimization and dead code elimination phases.

BB1:
  i = 123
  j = i * j

BB2:
  PRINT(j)
  t0 = j > 5

BB3:
  i = i + 1

T

BB4:

F

BB5:
  t1 = i <= 234

BB6:

T

F

Fig. 3: CFG of the example subprogram from [5].

BB1:
  i0 = 
  j0 = 
  i1 = 123
  j1 = i1 * j0

BB2:
  PRINT(j2)
  t0 = j2 > 5

BB3:
  i7 = i3 + 1

T

BB4:

F

BB5:
  t1 = i5 <= 234

BB6:

T

F

BB1:
  i0 = 
  j0 = 
  i1 = 123
  j1 = i1 * j0

BB2:
  PRINT(j2)
  t0 = j2 > 5

BB3:
  i4 = i3 + 1

T

BB4:

F

BB5:
  t1 = i6 <= 234

BB6:

T

F

Fig. 4: Incomplete SSA for the example following variable
numbering with algorithmP (left) andH (right).

BB1:
  i0 = 
  j0 = 
  i1 = 123
  j1 = i1 * j0

BB2:
  i2 = phi(i5, i1)
  j2 = phi(j1, j5)
  PRINT(j2)
  t0 = j2 > 5

BB3:
  i3 = phi(i2)
  j3 = phi(j2)
  i7 = i3 + 1

T

BB4:
  i4 = phi(i2)
  j4 = phi(j2)

F

BB5:
  i5 = phi(i7)
  j5 = phi(j3)
  t1 = i5 <= 234

BB6:
  i6 = phi(i5, i4)
  j6 = phi(j5, j4)

T

F

BB1:
  i0 = 
  j0 = 
  i1 = 123
  j1 = i1 * j0

BB2:
  i2 = phi(i7, i1)
  PRINT(j1)
  t0 = j1 > 5

BB3:
  i7 = i2 + 1

T

BB4:

F

BB5:
  t1 = i7 <= 234

BB6:
  i6 = phi(i7, i2)

T

F

Fig. 5: Valid SSA for the example afterφ-insertion (left) and
φ-minimization and dead code elimination (right).

4.1 Motivating example
The motivating example from [5] is shown in Fig. 3, with

incomplete SSA following variable numbering in Fig. 4.
Valid unoptimized and minimal SSA are shown in Fig. 5

involving the maximum and minimum possible number
of φs, respectively, as generated byP . H presents only
lexicographic and not semantic differences to this result.
Both algorithms achieve the generation of minimal SSA
involving the twoφ statements in BB2 and BB6.

4.2 Analysis of algorithmsP and H

Variable numbering in algorithmP is given in Fig. 6. Only
arrays and maps (key-indexed) are used for sequences of
same-type elements. Vectorized assignments to arrays/maps
are allowed, copying a scalar to all elements. A single iter-
ative form is used for iterating over a set or sequence. Lists
can have subset updates, member insertions and deletions



VariableNumbering(List NACs, List vars):
ssa_vars = empty; var_reads = zeroes;
var_writes = ones; set_writes = 0;
curr_bb = 0; prev_bb = -1;
bbnum = get number of basic blocks from NACs;
for stmt in NACs do

if stmt.bb != curr_bb then
prev_bb = curr_bb; curr_bb = stmt.bbix;
if curr_bb > 1 and set_writes == 0 then

var_writes = bbnum; set_writes = 1;
var_reads = curr_bb;

for input operand (opnd) in stmt do
if opnd is a localvar and is scalar then

ssaopnd = opnd ## var_reads[’opnd’];
update input operands of stmt;

for output operand (opnd) in stmt do
get opnd_ix = index of opnd in vars;
if opnd is a localvar and is scalar then

if stmt.bb > 1 then
var_writes[’opnd’] += 1;

var_reads[’opnd’] = var_writes[’opnd’];
ssaopnd = opnd ## var_writes[’opnd’];
insert ssaopnd to ssa_vars list;

update output operands of stmt;
update stmt in NACs;

delete localvar scalars from vars;
merge ssa_vars with vars;

Fig. 6: Variable numbering in algorithmP .

and can be merged. A key-based retrieval operation named
get is also used. GNU C concatenation## is used.

P alters in-place the NAC statement list and replaces the
non-SSA variable list by a versioned one,ssa_vars. var_-
reads and var_writes define maps for keeping the version
numbers of CFG variables.set_writesis a flag array for
controlling proper initialization ofvar_writes. curr_bb and
prev_bbare BB markers for the current and previous BB
accessible in a single pass over NAC statements.bbnumis
the number of BBs in the CFG. For each NAC,var_writes
is set tobbnumfor all except the entry BB.var_readsis set
to curr_bb. Then, for each NAC input operand, which is a
local scalar, a versioned variable is created using the entry in
var_reads. For output operands,var_writes is incremented
for a non-entry BB and thevar_readsentry for the same
operand is updated for future uses. A new SSA variable is
defined according to the value ofvar_writes entry and is
inserted inssa_vars. After updating each NAC accordingly,
local scalars are deleted from the initial list andssa_varsis
merged withvars.

Variable numbering in algorithmH uses a ‘visited’ map,
var_bb_id. After some preprocessing, input operands are
numbered in the exact same way as inP . Output operands
are associated to defined SSA variables: for unvisited vari-
ables of entry blocks,var_writes is incremented by two,
otherwise by one. Then unvisited variables are marked as
visited. Afterwards,var_readsis updated as inP .

φ-insertion according toP reads both the non-SSA and
SSA variable lists as shown in Fig. 7.φ statements are col-
lected inphi_stmts. bb_predsis the list of all preceding BBs
for a given block andbb_preds_numkeeps their number.
All BBs are scanned to updatebb_predsandbb_preds_num,
then for each non-SSA variable active in the given BB (k),
the φ statement destination operand is created as thek+1

PhiInsertion(List NACs, List vars, List labels,
List nonssa_vars):
phi_stmts = empty; bb_preds = zeroes; bb_preds_num = 0;
(ST, G) = create CFG from (NACs, labels);
for k in BBs(ST) do

insert predecessor BBs of k in bb_preds;
bb_preds_num = get number of predecessor BBs of k;
for sopnd in nonssa_vars do

if sopnd is localvar scalar, has def/use in k then
phi_opnds_in = empty; phi_opnds_out = empty;
if bb_preds_num > 1 then
ssaopnd_out = sopnd ## k+1;
insert ssaopnd_out to phi_opnds_out;
insert ssaopnd_out to vars;

ix = 0;
for n in bb_preds_num do
if bb_preds[n] != -1 then

ix = SSA ver of sopnd at last def in BB #n;
if ix == 0 then

ix = bb_preds[n] + 1;
ssaopnd_in = sopnd ## ix;
insert ssaopnd_in to phi_opnds_in;

if k == 0 and BB #k does not define sopnd then
phi_stmt = LOADCONST(phi_opnds_out);

elsif BB #k has predecessors then
phi_stmt = PHI(phi_opnds_out, phi_opnds_in);

insert phi_stmt to phi_stmts;
merge NACs with phi_stmts;
update absolute addresses (addr) in NACs, labels;

Fig. 7: φ-insertion in algorithmP .

version. Determining input SSA operands for each NAC
requires scanning all predecessors, and if any exist, to assign
the versionbb_preds[n]+1. Then, either a constant load or
a φ statement is created, the latter for non-entry BBs.
φ-insertion inH examines all parsed BBs for determining

subsequent variable versions for eachφ output operand. If a
def of this operand is found, its SSA version is incremented
by two over the current index, otherwise by one. Source
operand version is defined by a similar process, without the
additional version increment.

5. Conclusions
In this paper, a semantic-free IR, named NAC, was

presented, for use in rapid prototyping ASIP compilers.
Its applicability is illustrated through cases of rule-based
transformation for better CI generation, application profiling
and self-contained description of minimal SSA construction
algorithms.
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