NAC: A lightweight intermediate representation for ASIP compilers

Nikolaos Kavvadias and Kostas Masselos
Department of Computer Science and Technology, Universifyetoponnese, 22100 Tripoli, Greece

Abstract— ASIP processors are tuned for optimized map-2. Representing programs in NAC
ping of narrow application sets in heterogeneous platforms

Their successful development relies on compiler-based de-) . .
sign space exploration. The careful design of the compiler In this section, the NAC typed-assembly language is de-

intermediate language is a necessity, due to its dual pmpossﬁ”bel_d' NAC pro;m_jeslgfbltr.ary—t?f—m mapplingT allowing
as both the program representation and an abstract targefe €limination of implicit side-effects, a single constru

machine. Its design affects the complexity, efficiency asd e " all operations, and bit-accurate data types. It susport
of maintenance of all compilation phases. scalar, single-dimensional array and streamed |/O proeedu

In this work, an extensible typed assembly intermediat@rguments. NAC statements are labelsddress instructions
language, NAC, is presented. It can be used for processor el procedure calls.

ploration, optimizing intermediate representation (IRyrts- An n-address instruction is actually the specification
formations and SSA compilation. Minimal SSA constructio®f & mapping from a set of. ordered inputs to a set of
algorithms are thoroughly presented for the first tire. m ordered outputs. Also termed &s, m)-operation, it is
formatted as follows:
Keywords: compilers, intermediate representation, SSA, ASIP outpl, ..., outpm<= op inpl, ..., inpn;
where: op is a mnemonic referring to an IR instruction,
1. Introduction and related work inpl,...,inpn are itsn inputs, andout p1, ..., out pm

o)) its m outputs.
Recent compilation frameworks provide linear IRs for . -~ .
. S . All declared objects have an explicit static type spec-
applying analyses, optimizations and as input for backenq. L i .

; ification: “globalvar” (a global scalar or array variable),
code generation. GCC [1] supports the GIMPLE IR. Many, " o !
GCC optimizations have been rewritten for GIMPLE, but Iocalva_r (a scalar or array local), "in” (an input argunten
it is still undergoing grammar and interface changes. GC(E0 the given procedgre), or “out” (an output argument).
supports backends for ASIP processors such as baselineNAC supports bit-accurate data types for (signed/un-
Xtensa [2] but it is not suitable for rapid retargeting to Signed) integer/fixed-point and floating-point arithmetic
non-trivial architectures. LLVM [3] uses a register-basedPata type specifications are essentially strings that can be
IR named LLVM bitcode, targeted by a C/C++ companion€@sily decoded by a regular expression scanner; typical
frontend (clang). It is written in better coding style than®xa@mples are32, sil, g4.4u, q2.14s, f1.8.23,re-
GCC, but similarly the IR infrastructure and semantics aréPectively.
excessive. The EBNF grammar for NAC is shown in Fig. 1 where it

In this paper, the NAC (N-Address Code) IR is introduced.can be seen that rules “nac” and “pcall” provide the means
NAC supports semantic-free-inputim-output mappings, for then-to-m generic mapping for operations and procedure
user-defined data types, and specifies a virtual machingglls, respectively. It is important to note that NAC has
architecture. NAC's strength is its simplicity: it is inlesitly ~ no predefined operator set; operators are defined through a
easy to develop a CDFG (Control/Data Flow Graph) extractextual mnemonic.

tion API, apply graph-based IR transformations for domain For instance, an addition of two scalar operands is written
specialization, investigate SSA (Static Single Assignthen as: a <= add b, c;. Control-transfer operations include
construction algorithms and perform other compilatiorksas conditional and unconditional jumps explicitly visible fine
for ASIPs. IR. An example of an unconditional jump would &85 <=
Specifically, this paper investigates minimal SSA con-j npun; while conditional jumps always declare both targets:
struction schemes [4], [5] that don’t require the compotati BB1, BB2 <= jnpeq i, 10;. This statement enables a
of the iterated dominance frontier [6]. For the first time; de control transfer to the entry of basic block BB1 whén
tailed implementations are illustrated to ease their adopt equals to 10, otherwise to BB2.

In new projects. Procedures are supported as non-atomic operations by

using a similar form to operations. | <= sqrt(x);
1The presented research work was co-funded by the Europe 9 P ty) art (x)

a H .
Union in the frame of the ENOSYS projest (FP7.ICT-24882am (e square root of an operandis computed; procedure
enosys- proj ect . eu). argument lists are indicated as enclosed in parentheses.

nac_top = var _def roc_def}. .. .
gvar__dzf :{9g| obal Véripanuﬁ] de}c|_item_| st Table 2: CI characteristics for hand-optimized ANSI C
proc_def = "procedure” [anun] "(" [arg_lst] ")" implementations otrcspand crcdp.

"{" [{lvar_decl}] [{stnt}] "}". GA BitJevel Cval ol ol
stnmt = npac | peall | id":". itleve N;/N, ycles area
nac = [id_Ist "<="] anum[id_Ist] ";". operator oper. (seq.) | cycles (MAU)
pcal | = ["(" id_Ist ")" "<="] anum["(" id_Ist ")"] ";". cresp No/Yes 41 76-13 - -
idlIst =id{"," id}. cresp No/Yes 8/1 41-6 3-1 0.977-0.142
decl _item|st = decl _item{"," decl _itent. cresp No/Yes 8/2 5-1 3-1 1.867-0.153
decl _item = (anum | uninitarr | initarr). crcdp No/Yes 471 | 111-18 — —
arg_l st = arg_decl {"," arg_decl}. crcdp No/Yes 8/1 58-8 3-1 1.466-0.147
arg_decl = ("in" | "out") anum (anum | uninitarr). crcdp No/Yes 8/2 5-1 3-1 2.800-0.164
I var_decl = "localvar" anumdecl _iteml|st ";"
initarr = anum"[" id "]" "=" "{" numer {"," numer} "}".
uninitarr = anum*"[" [id] "]". . —_ . H ; ;
anum = (letter | " ") {letter | digit}. NAC:b <= load a, i; ,whlle for an indexed storea[i |
id=anum| (["-"] (integer | fxpnun)). = b;)itisa <= store b, i;.

3.2 IR extensions

We have defined three custom IR operatdvsf i ns,
bi t ext andconcat, for bitfield insertion/extraction from

Fig. 1: EBNF grammar for NAC (N-Address Code).

Table 1: A set of basic operations for a NAC-based IR.

Mnemonic Description N, No) a word and concatenation of two or more subwords. As
I dc Load constant (1.1) motivational examples, the singlecrésp and double-point
neg, nov Unary arithmetic op. (1,1) .
add, sub, abs, mn, nax, Binary arithmetic op. [N (crcdp crossover operators are examined. C code for the
mul, div, nmod, shl, shr . . .
Hot—and—Tor—xor Cogical eRY genetic algorlthm_ oper_ators was passed to_Machlne SUIF
setzz Comparison forzz: (30) [7] for IR generation using a peephole matching-based code
(eq, ne, It,le,gt,ge) -
X732 Condiional selecion | (3.1) selection pass for the ByoRISC ASIP [8]. ByoRISC supports
load, store Load/Store fromfo| (2,1) Cls with up to 8 inputs and 8 outputs.
mem. H .
SXtZxXtTrunc Type conversion) crespreads four inputs: two parent chromosomes (father,
jmpun Unconditional jump () mother), crossover point (location), and chromosome tengt
p g
jnmpzz Conditional jump 2,2)

(len) and produces two independent outputs; the (son, daugh
ter) chromosomes for the next generatiortdp defines two

2.1 Encoding NAC information crossover points for bitfield exchange.
In Table 2, with bit-level operators unused, the minimum

A NAC program incorporates the complete information, mper of cycles required famcspare 76 for a sequential
of a translation unit of the original program comprising of chequle and 12 for an ASAP. while for tioecdp these
a “globalvar” definition list and a procedure list. A single jinits are 111 and 14, respectively. When the bit-level oper-
NAC procedure is defined by the following set of lists: 54515 are used, the sequential schedules without Cls eequir
ordered input (output) a_lrguments, localvar” definitions, 13 5nq 18 cycles farrcspandcredprespectively with ASAP
NAC statements and ba§|c blpck (BB) labels. ~ schedules of 5 cycles for both. When the/N, = {8/2}

State_ments are organized in the form_of a record._ List3onstraint is used, a single-cycle multi-input, multiqoutt
opnds_inand opnds_“outcollect Op?rand items, following \m0) CI is identified for each crossover operator. The
the definition of an “Operanditem” record. This record is5req requirement is estimated relatively to the area (multi
comprised of an identifier name, a data type spemﬁcanorb"er area unit or MAU) of a 32-bit single-cycle multiplier

an operand typeofypg representation and an absolute characterized for a Virtex-4 FPGA (XCAVLX25).
operand item indexotype can take one of the following

values: {INARG, OUTARG, LOCALVAR, GLOBALVAR, 3.3 CDFG construction
CONSTANT} and {INVAR, OUTVAR} as an additional A novel, fast CDFG construction algorithm has been

def/use specifier for NAC statements. devised for both SSA and non-SSA NAC forms producing
. flat CDFGs (Fig. 2). A CDFG symbol table item is a node
3. Uses and extensions of NAC (operation, procedure call, globalvar, or constant) oreedg

. . . (localvar) with user-defined attributes: the unique name,
3.1 A basic NAC implementation label and data type specification; node and edge type enu-
A basic operation set for RISC compilation is summarizedmeration; respective order of incoming or outgoing edges;
in Table 1.N; (N,) denotes the number of input (output) input/output argument order of a node and BB index. Further
operands for each operation. attributes can be defined, e.g. for scheduling bookkeeping.

The memory access model defines dedicated address L - .
spaces per array, so that both loads and stores require tRe? Application profiling with NACVM
array identifier as an explicit operand. For an indexed load NAC programs can be either interpreted or translated to
inC (b = a[i];), afrontend would generate the following low-level C for performance evaluation on the correspogdin

NACt oCDFQE()
input List NACs, List variables, List labels, Gaph cfgj
out put Synbol Tabl e st, G aph cdfg;

begi n
Insert constant, input/output argunments and gl obal
vari abl e operand nodes to st;
Insert operation nodes;
Insert incom ng {global/constant/input, operation} and
out goi ng {operation, global/output} edges;
Add control - dependence edges anpng operation nodes;
Add dat a- dependence edges anobng operation nodes,
extract |oop-carried dependencies via cfg reachability;
Cenerate cdfg fromst;

end

Fig. 2: CDFG construction algorithm accepting NAC input.

=i1*jo

Table 3: Application profiling with a NAC framework.
App. LOC | LOC PIVIE | #¢s #Instr.
(NAC) | (dot)
atsort 155 | 484 | 2/136/336| 10 6907
coins 105 | 509 | 2/121/376| 10 | 405726
cordic 56 | 178 | 1/57/115 7 | 256335
easter a7 111 1/46/59 2 3082
fixsqrt 32 87 1/29/52 6 | 833900
perfect 31 65 1/23/36 4 | 6590739 : _ .

sieve 82 | 199 | 2/64/123| 12 | 515687 Fig. 4: Incomplete SSA for the example following variable

0

xorshift 26 | 80| 1/29/45 2000 numbering with algorithmP (left) and H (right).

abstract machine, NACVM. A set of realistic kernels has e £

o - o
been selectedatsort (an all topological sorts algorithm Wi @im
]

ji=i1+jo =i1*jo

by Knuth), coins (compute change with minimum amount T i
of coins), multimodecordic computation, easter (Easter B = phiis. 1y E“g&(plml;n,.n

i2=phi(j1 j5)
PRINT(j 2)

date calculations)ixsqgrt (fixed-point sqrt),perfect (perfect o s osinee
number detection)sieve (prime sieve of Eratosthenes) and / ¢ £ N

. . BB3: N B83:
xorshift (100 calls to G. Marsaglia's PRNG). i3 = phi(i2 =iz i7=ize1
BIRY?

j4=phi(j2)

Static and dynamic metrics have been collected in Table 3. < <

For each application (App.), the lines of NAC and resulting s =7 =17 < 2

i5=phi(j3)

CDFGs are given in columns 2-3, number of CDFG% (=5 < 2
procedures), vertices and edges (for each procedure) in —
i6=phi(i7, i2)

i6 = phi(i5, i4)

column 4, amount ok statements (column 5) and lastly 165 19

the number of dynamic instructions for the non-SSA case.Fig. 5: valid SSA for the example aftérinsertion (left) and
¢-minimization and dead code elimination (right).

4. SSA construction algorithms

This paper argues that rapid prototyping compilers, wouldt-1 Motivating example
benefit from straightforward SSA construction schemes The motivating example from [5] is shown in Fig. 3, with
which don’t require the use of sophisticated concepts anthcomplete SSA following variable numbering in Fig. 4.
data structures [4], [5]. Valid unoptimized and minimal SSA are shown in Fig. 5
Algorithm P presents a “really-crude” approach for vari- involving the maximum and minimum possible number
able renaming and-function insertion [4]. In the first phase, of ¢s, respectively, as generated B H presents only
every variable is split at BB boundaries, while in the secondexicographic and not semantic differences to this result.
phaseg-functions are placed for each variable in each BB.Both algorithms achieve the generation of minimal SSA
Variable versions are actually preassigned in constarg timinvolving the two¢ statements in BB2 and BB6.
and reflect a specific BB ordering (e.g. DFS). Thus, variable .)
versioning starts from a positive integer equal to the 4.2 Analysis of algorithms P and H
number of BBs in the given CFG. Variable numbering in algorithn® is given in Fig. 6. Only
Algorithm H does not predetermine variable versions atarrays and maps (key-indexed) are used for sequences of
control-flow joins but accountgs the same way as actual same-type elements. Vectorized assignments to arrays/map
computations visible in the original CFG. Due to this fact,are allowed, copying a scalar to all elements. A single iter-
¢-insertion also presents dissimilarities. Both methodseh ative form is used for iterating over a set or sequence. Lists
commong-minimization and dead code elimination phasescan have subset updates, member insertions and deletions

Vari abl eNunmbering(Li st NACs, List vars): Phi I nsertion(List NACs, List vars, List |abels,
ssa_vars = enpty; var_reads = zeroes; Li st nonssa_vars):
var_wites = ones; set_wites = 0; phi _stnts = enpty; bb_preds = zeroes; bb_preds_num = 0;
curr_bb = 0; prev_bb = -1; (ST, G = create CFG from (NACs, |abels);
bbnum = get nunber of basic bl ocks from NAGs; for k in BBs(ST) do
for stnmt in NACs do insert predecessor BBs of k in bb_preds;
if stnt.bb !'= curr_bb then bb_preds_num = get nunber of predecessor BBs of k;
prev_bb = curr_bb; curr_bb = stnt.bbix; for sopnd in nonssa_vars do
if curr_bb > 1 and set_wites == 0 then if sopnd is |ocalvar scalar, has def/use in k then
var_wites = bbnum set_wites = 1; phi _opnds_in = enpty; phi_opnds_out = enpty;
var _reads = curr_bb; if bb_preds_num> 1 then
for input operand (opnd) in stnt do ssaopnd_out = sopnd ## k+1;
if opnd is a localvar and is scalar then insert ssaopnd_out to phi_opnds_out;
ssaopnd = opnd ## var_reads[’ opnd']; insert ssaopnd_out to vars;
updat e i nput operands of stnt; ix = 0;
for output operand (opnd) in stnt do for nin bb_preds_num do
get opnd_ix = index of opnd in vars; if bb_preds[n] != -1 then
if opnd is a localvar and is scalar then ix = SSA ver of sopnd at |last def in BB #n;
if stnt.bb > 1 then if ix == 0 then
var_wites[’ opnd’] += 1; ix = bb_preds[n] + 1;
var _reads[’opnd’] = var_writes[opnd']; ssaopnd_i n = sopnd ## iX;
ssaopnd = opnd ## var_wites[’ opnd']; insert ssaopnd_in to phi_opnds_in;
insert ssaopnd to ssa_vars list; if k == 0 and BB #k does not define sopnd then
updat e out put operands of stnt; phi _stnt = LOADCONST(phi _opnds_out);
update stnt in NACs; el sif BB #k has predecessors then
del ete | ocal var scalars fromvars; phi _stnt = PHI (phi _opnds_out, phi_opnds_in);
nmerge ssa_vars with vars; insert phi_stnt to phi_stnts;
T ; a - 0 0 nmerge NACs with phi_stnts;
Flg' 6: Variable numberlng n algomhm" updat e absol ute addresses (addr) in NACs, |abels;

Fig. 7: ¢-insertion in algorithmpP.
and can be merged. A key-based retrieval operation named 9. 79 d

getis also used. GNU C concatenatié# is used. version. Determining input SSA operands for each NAC
P alters in-place the NAC statement list and replaces theequires scanning all predecessors, and if any exist, tgrass
non-SSA variable list by a versioned orgsa_varsvar_- the versionbb_pred§n]+1. Then, either a constant load or

reads and var_writes define maps for keeping the version 3 ¢ statement is created, the latter for non-entry BBs.
numbers of CFG variableset_writesis a flag array for ¢-insertion inH examines all parsed BBs for determining
controlling proper initialization ofvar_writes curr_bband subsequent variable versions for eacbutput operand. If a
prev_bbare BB markers for the current and previous BBdef of this operand is found, its SSA version is incremented
accessible in a single pass over NAC statemebftsumis by two over the current index, otherwise by one. Source

the number of BBs in the CFG. For each NAGr_writes gperand version is defined by a similar process, without the
is set tobbnumfor all except the entry BBvar_readsis set additional version increment.

to curr_bb. Then, for each NAC input operand, which is a
local scalar, a versioned variable is created using thg @mtr 5. Conclusions

var_reads For output operandsgar_wrltess incremented In this paper, a semantic-free IR, named NAC, was

for a ngn_-entré/ BE; ?ndfthevar_readsentry for the sgn;? _Eresented, for use in rapid prototyping ASIP compilers.
operand is updated for future uses. A new SSA variable i oojicanility is illustrated through cases of rule-eds

Qeflntedd gccordmg tXﬁthe Vzluf mr_vglﬁicentry ag‘?' ISI transformation for better Cl generation, application pirggi
INSETEd Inssa_vars Alter updating each accordingly, and self-contained description of minimal SSA constructio
local scalars are deleted from the initial list asgh_vards algorithms
merged withvars, '
Variable numbering in algorithni/ uses a ‘visited’ map, References
var_bb_id After some preprocessing, input operands aref _ _
. 1] GCC. [Online]. Available: http://gcc.gnu.org
numbered in the exact same way asHnOutput operands 5] Tensilica. [Online]. Available: http://www.tensiccom
are associated to defined SSA variables: for unvisited vari{g] LLVM. [Online]. Available: http:/llvm.org _
ables of entry blocksyar writesis incremented by two, [41 A- W. Appel, “SSA is functional programming/ACM SIGPLAN
herwise b Then unvisited variables are marked Notices vol. 33, no. 4, pp. 1720, Apr 1998. RS
O_t _erW'Se y one. en u i : 6}§] J. Aycock and N. Horspool, “Simple generation of statiogéé assign-
visited. Afterwardsyar_readsis updated as irP. ment form,” in Proc. 9th Int. Conf. in Compiler Constructipr2000,

i ; ; _ pp. 110-125.
¢-insertion according taP reads both the non-SSA and [6] R, Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman. and F. ez,

SSA V"_iriab_le lists as ShOWU in Fig. J-StatementS_are col- “Efficiently computing static single assignment form and thteol

lected inphi_stmtsbb_predss the list of all preceding BBs dependence graphACM Trans. Prog. Lang. Systvol. 13, no. 4, pp.
i i 451-490, Oct 1991.

for a given block and)b_preds_nunkeeps their number. [7] Machine-SUIF. [Online]. Available: http://www.eetsrvard.edu/hube/

All BBs are scanned to updal®_predsandbb_preds_num software/

then for each non-SSA variable active in the given BB (k),[8] N. Kavvadias and S. Nikolaidis, “The ByoRISC configuraiprocessor
the ¢ statement destination operand is created asktte family” in Proc. IFIP/IEEE VLSI-So€Oct. 2008, pp. 439-444.

