
Design of fixed-point rounding operators for the

VHDL-2008 standard

Nikolaos Kavvadias and Kostas Masselos

Department of Computer Science and Technology

University of Peloponnese

22100 Tripoli, Greece

Email: {nkavv,kmas}@uop.gr

Abstract—The contemporary design of sophisticated digital
signal processing platforms involves the use of specifications at an
increasingly raised abstraction level. This scheme is dictated by
the ever growing divide between available circuit complexity and
developer productivity. Algorithm developers tend to use very
high-level programming languages such as MATLAB in order to
rapidly and seamlessly generate low-level design facets such as
ANSI C reference implementations and synthesizable HDL code.

In this paper, a generic and parameterized implementation
of fixed-point rounding operators in the VHDL hardware de-
scription language is introduced. Most hardware compilation
frameworks either lack the support of these operators or provide
specialized and non-portable implementations. Further, this is
the first time that an implementation for these operators is
being proposed, that can take advantage of features only present
in the VHDL-2008 standard. Compared to existing fixed-point
rounding, the proposed combinatorial designs achieve lower
timing by about 30% with similar area demands for the case
of signed arithmetic compared to rival designs when realized on
FPGAs.

I. INTRODUCTION

Current VLSI technology allows the design of sophisti-

cated digital systems with escalated demands in performance

and power/energy consumption. The annual increase of chip

complexity is 58% [1], consistently reflected by Moore’s law

[2], while human designers’ productivity increase is limited to

21% per annum. The growing gap between the technological

capabilities and designer productivity is probably the most

important problem in the industrial development of innovative

products.

Apart from secondary factors (design reuse, human ex-

perience), a dramatic increase in designer productivity, is

only possible through the adoption of methodologies and

tools that raise the design entry abstraction level, ingeniously

hiding low-level, time-consuming, error-prone details. New

electronic design automation (EDA) methodologies aim to

automate register transfer level (RTL) digital designs from

high-level descriptions, a process called High-Level Synthesis

(HLS) [3]. The input to this process is usually an algorithmic

description in a high-level programming language (Java, C,

C++, MATLAB), generating digital circuits in Verilog/VHDL.

Recent EDA tools provide algorithm specification and code

generation facilities than enable a quick path for concept to

implementation. A popular numerical analysis language, MAT-

LAB [4], and related open-source projects (Scilab [5], Octave

[6]) are highly popular among algorithm engineers from many

disciplines. These environments are extensible using plug-in

mechanisms in order to introduce advanced functionalities to

meet user demands. A popular plug-in for developers of digital

signal processing (DSP) algorithms [7] especially from the

field of communication systems modelling is the Fixed-Point

Toolbox [8]. The use of fixed-point arithmetic [9] provides

an inexpensive means for improved numerical dynamic range,

when artifacts due to quantization and overflow effects can

be tolerated. Rounding operators are used for controlling the

numerical precision involved in a series of computations;

they are defined for inexact arithmetic representations such

as fixed-point and floating-point schemes. Commonly used

rounding schemes include rounding towards plus (ceiling) or

minus (flooring) infinity. To ease algorithm development, the

MATLAB programming language defines four additional oper-

ators: fix, round, nearest, convergent that have

different interpretation to ceil and floor. These operators

can be considered as the common denominator of existing

rounding schemes found in numerical analysis software in

general.

The support of fixed-point arithmetic in several program-

ming language specifications has been included as an af-

terthought, often due to user demand. As of current, there does

not exist a language-independent standard for fixed-point arith-

metic. The C99 standard [10] defines fixed-point data types

and MATLAB supports such types via an external toolbox. A

lightweight ANSI C implementation of fixed-point arithmetic

has been sketched in [11]. A complete implementation of a

counterpart to the SystemC [12] fixed-point data types is part

of the Algorithmic C Data Types suite [13], [14]; this work

focuses on offering a plethora of rounding modes. The latest

approved IEEE 1076 standard (termed VHDL-2008) [15] adds

signed (sfixed) and unsigned (ufixed) fixed-point data

types and a set of primitives for their manipulation [16]. The

VHDL fixed-point package provides synthesizable implemen-

tations of fixed-point primitives for arithmetic, scaling and

operand resizing [17].

In this work, generic and parameterized implementations of

all MATLAB-like rounding operators are presented for the

first time. These operators have been designed as vendor-

independent VHDL source code and are part of a package

that is freely available in the web1. The designs are highly-

optimized combinatorial functions so that they can be included

as atomic operations in modern soft-core microprocessors.

Further, this work attempts to complement the existing fixed-

point VHDL-2008 package and provide a useful extension of

synthesizable rounding operators.

The remainder of this paper is organized as follows. Sec-

tion II overviews previous research on the subject. In Sec-

tion III, complete and detailed designs of the fixed-point

rounding operators are presented from a hardware point of

view. Section IV discusses area and timing characterization

of FPGA implementations for the operators across different

devices and provides comparisons to third-party implementa-

tions, when such are accessible. Finally, Section V summarizes

the paper.

II. RELATED WORK

Generally, there is lack of open implementations of fixed-

point rounding primitives. However, design of such a hard-

ware module library is necessary for the implementation of

predefined accelerator units of Embedded MATLAB intrin-

sic functions. Last years, a number of software compilation

and high-level synthesis tools have been developed with the

purpose of translating a subset of MATLAB to interpretable

bytecode [18], native code (through an ANSI C compiler) [19],

or a high-performance hardware architecture [20]–[23].

McLab [18] is an academic project aiming at the de-

velopment of an extensible compiler toolkit for MATLAB

source code. The McLab approach applies JIT (Just-In Time)

compilation to McLab IR (intermediate representation) which

can be either interpreted (McVM) or compiled to native code.

The same project attempts to bridge the semantic differences

between MATLAB and the traditional workhorse for scientific

computation, Fortran (McFor). Though, certainly an interest-

ing project, the future roadmap does not seem to involve

hardware generation.

GraphLab [24], [25] is an unreleased academic project

for multi-language high-level synthesis. The supported source

languages include a subset of MATLAB. The author acknowl-

edges the need of predefined hardware libraries; a necessity

when targeting specifications utilizing black-boxes such as

MATLAB. Still, the integrated pre-characterized libraries used

in GraphLab do not include a standard-compliant library for

supporting fixed-point rounding.

AccelDSP [20] is a discontinued Xilinx [26] product pro-

moted as a designer assist for the task of DSP algorithm

compilation to FPGA-oriented hardware. The AccelDSP doc-

umentation clearly states that a path to hardware is provided

for the fixed-point rounding operators, however neither source

code listings nor experimental results can be found, which

would prove useful for comparison purposes.

Synopsys Synphony [22] is an ambitious framework for

MATLAB-to-hardware compilation that was announced in

1http://www.opencores.org/project,fixed extensions

2010. Synphony includes a synthesizable fixed-point high-

level IP model library, however certain issues remain unclear:

a) the interdependence with a MATLAB/Simulink installation,

b) the specific MATLAB subset supported (certain dynamic

aspects of the language are far from trivial to support), and c)

accessible examples so that the capabilities of Synphony can

be assessed.

Simulink HDL coder [23] is a mature code generator by

MathWorks that focuses rather on block diagram-based than

textual specifications. It is offered as an add-on package to

the MATLAB environment and utilizes an undisclosed vendor-

dependent library for supporting fixed-point arithmetic.

The proposed fixed-point extension library delivers a

straightforward solution to the problem of implementing fixed-

point rounding operators in hardware. In the form of a vendor-

independent package, the relevant VHDL source code can be

included in the implementation of third-party tools, e.g. in

the development of an RTL VHDL code generation backend.

In this paper, we show that the proposed operators’ design

induces small hardware demands on modern FPGAs. Further,

the exact performance in terms of propagation delay and

area demands is evaluated across multiple devices in order to

highlight performance trends on FPGA processes with smaller

geometries.

III. DESIGN OF FIXED-POINT ROUNDING OPERATORS

This section presents an introduction to the sfixed and

ufixed VHDL-2008 data types, followed by the detailed

designs for fixed-point binary rounding.

A. Short primer on fixed-point rounding

Fixed-point arithmetic is a variant of the typical integral

representation (2’s-complement signed or unsigned) where a

binary point is defined, purely as a notational artifact to signify

integer powers of 2 with a negative exponent. Assuming an

integer part of width IW > 0 and a fractional part of −FW <

0, the VHDL-2008 sfixed data type has a range of 2IW−1−
2|FW | to −2IW−1 with a representable quantum of 2|FW |.

Correspondingly, ufixed has the following range: 2IW −
2|FW | to −2IW−1. Actually, the VHDL fixed-point package

allows for greater freedom (e.g. FW < 0) but in this work

the following are assumed:

• The binary point is located between the 20 and 2−1

powers

• At least one fractional bit is defined (i.e. the fixed-point

numbers are not degenerate integers)

• At least one integral bit is defined

According to VHDL-2008, fixed-point signals can be de-

clared as shown in Fig. 1.

The current MATLAB specification defines six distinct

cases of fixed-point rounding. These intrinsic functions are

considered as black-boxes by third-party tools and no general

implementations exist, that are compatible to VHDL-2008.

Table I shows the rounding primitives with a short description

for each, followed by an illustrative set of numerical examples.

Small MATLAB programs have been used for generating

� �
signal fxp1 : sfixed(4 downto -5);

signal fxp2 : ufixed(7 downto -8);

// using generics

signal fxp3 : sfixed(IW-1 downto -FW);
� �

Fig. 1. Partial VHDL description of the index generation unit for NLP=3.

� �
...

if (arg’low > 0) then

y := resize(arg, arg’high, arg’low);

return y;

end if;
� �

Fig. 2. Rounding of a quantized integer.

reference data vectors so that the corresponding VHDL RTL

rounding operators can be dynamically verified.

B. The resize primitive

The resize function can be used as a rounding and satu-

ration primitive for adjusting the size of fixed-point operands

[27]. As inputs, it accepts a fixed-point operand, a left and a

right index bound and two additional arguments that specify

the rounding (underflow handling) and saturation (overflow

handling) mechanisms. While different underflow (rounding

to nearest and truncation) and overflow (saturation or wrap-

around) schemes are supported, they do not provide the exten-

sive functionality required for emulating MATLAB rounding.

The resize primitive is an integral part of the VHDL-

2008 standard, thus this work utilizes it for the optimized

implementation of MATLAB rounding schemes. All the op-

erators discussed in section III-C use resize with the de-

fault overflow/underflow modes (fixed_round, fixed_-

saturate) as an essential building block.

C. Implementation of MATLAB-like rounding

In the following implementations, signal y is considered

as the output and arg as the input of each operation. Also,

it is assumed that an explicit check of the LSB (Least

Significant Bit) index takes place. This check can be removed

and the corresponding multiplexers (where the result of this

comparison is used for selection) can be reduced to simple

wiring, if the general case of arbitrary sign of IW,FW is not

of interest.

The special case for IW > 0,−FW > 0 defines a

quantized integer (QI) representation with a resolution of

2|FW |. The rounding of a QI number is performed in the

VHDL implementation as shown in Fig. 2.

Similarly, IW < 0,−FW > 0 define a quantized fractional

(QF) representation with a resolution of 2|FW |. The rounding

of a QF number is performed as shown in Fig. 3 and it always

computes to zero, since 0 ≤ argQF ≤ 1− 2|FW | .

1) ceil: Both the signed and unsigned ceiling operators can

be implemented with the same hardware. To achieve rounding

towards +∞, arg is increased by one when arg has a non-

zero fractional part, otherwise it is passed directly to resize

(multiplexer MUX1). The result range (arg’HIGH downto

� �
...

if (arg’high <= 0) then

y := (others => ’0’);

return y;

end if;
� �

Fig. 3. Rounding of a quantized fractional.

Fig. 4. Implementation of the ceil operator.

0) is passed directly to the output. The fractional part of

the result is selected from either the range (-1 downto

arg’LOW) or from a zeroed vector, the latter if the LSB index

is negative (equal or less than -1). In this way, fixed-point

numbers with any FW value can be handled. This runtime

check can be omitted if it is guaranteed that arg is not a

quantized integer.

If necessary, the same approach for handling the fractional

part is used in all implementations. Since vector upper and

lower bounds (arg′HIGH , arg′LOW) are known at design

compile-time, this structure can be eliminated by the logic

synthesis tool. The corresponding RTL design is shown in

Fig. 4.

2) fix: Two different designs are needed for implementing

the fix operator for signed and unsigned arithmetic. In the

circuit needed for the sfixed variant, if arg is negative then

either it is directly resized or it is first incremented by 1,

depending on the comparison of its fractional part to zero. The

choice of the incremented arg is not needed for the positive

case. The corresponding circuit can be seen in Fig. 5.

The implementation of fix rounding on unsigned fixed-

point numbers involves only the resizing of arg. This is

the simplest possible circuit for a rounding operation and is

illustrated in Fig. 6.

3) floor: The floor operator can be realized with the

help of the fix design for ufixed numbers. floor rounds

towards −∞ which means that it implements a consistent

scheme for either positive or negative values (signed arith-

metic) or if considering only magnitude (unsigned).

TABLE I
SUMMARY OF THE FIXED-POINT ROUNDING OPERATORS DEFINED BY THE MATLAB FIXED-POINT TOOLBOX.

Operator
Description (round

towards . . .)
Values

-3.5 -2.5 -1.75 -1.5 -1.25 -0.5 0.5 1.25 1.5 1.75 2.5 3.5

ceil +∞ -3 -2 -1 -1 -1 0 1 2 2 2 3 4

fix zero -3 -2 -1 -1 -1 0 0 1 1 1 2 3

floor −∞ -4 -3 -2 -2 -2 -1 0 1 1 1 2 3

nearest nearest; ties to greatest absolute value -3 -2 -2 -1 -1 0 1 1 2 2 3 4

round nearest; ties to +∞ -4 -3 -2 -2 -2 -1 1 2 2 2 3 4

convergent nearest; ties to closest even -4 -2 -2 -2 -1 0 0 1 2 2 2 4

Fig. 5. Implementation of the fix operator for signed arithmetic.

Fig. 6. Implementation of the fix operator for unsigned arithmetic.

4) round: Applying rounding-to-nearest with the round

operator scheme requires comparisons to the value of 1

2

(ONEHALF). If the fractional part of a positive arg is greater

than or equal to 1

2
then it has to be incremented prior resizing.

A negative value for arg is correspondingly resized when its

Fig. 7. Implementation of the round operator for signed arithmetic.

fractional part is strictly greater than 1

2
. The design is shown

in Fig. 7.

The unsigned variant of round requires a subset of the

aforementioned circuit. If deemed necessary, the round op-

erators can share a common hardware implementation without

any modification.

5) nearest: The signed and unsigned nearest operators

share a single design. If the fractional part of arg is greater or

equal to 1

2
, then its incremented value needs to be resized. This

is performed by the arg(-1) = ’1’ comparator which

determines whether to round towards zero (choice 0) or +∞
(choice 1). The additional multiplexing shown in Fig. 8 is only

required for performing runtime checks of the lower bound for

arg and can be automatically eliminated at design elaboration

time. The unsigned nearest is implemented by the same

circuit, since the same behaviour is expected for either positive

signed or unsigned arithmetic.

6) convergent: The circuit for convergent rounding

presents similarities to signed round and it is shown in

Fig. 9. It requires comparisons to the value of 1

2
as well as to

determine whether the integral part of arg is odd. The latter

comparison is needed for applying a rounding towards even

integers to resolve a tie. The final result for the integral part

is selected from two possible values from multiplexers MUX1

and MUX2. These choices are selected based on the results

Fig. 8. Implementation of the nearest operator.

Fig. 9. Implementation of the convergent operator.

of comparators CMP1 and CMP2, respectively. CMP1 checks

whether the fractional part of arg is greater to the ONEHALF

vector which has a constant value of 1

2
, while CMP2 performs

a greater-than-or-equal comparison to ONEHALF.

The VHDL source code for convergent implementing

all possible checks for the signs of the boundary indices of

the arg vector, which correspond to checks of the IW and

FW parameters is shown in Fig. 10. This version can be

even more generalized by avoiding constant indexing of the

arg vector. By providing IW,FW as input variables (or in

VHDL-2008 as package generics), the LSB (Least Significant

Bit) of the integral part (indexed by 0) can be referred to by

arg’HIGH-IW. Correspondingly, the MSB index (-1) of the

fractional part is equivalent to arg’low+FW-1.

� �
function convergent (arg : sfixed) return sfixed is

variable result: sfixed(arg’high downto arg’low);

variable onehalf: std_logic_vector(-arg’low-1 downto 0)

:= (others => ’0’);

begin

if (arg’high <= 0) then

result := (others => ’0’);

return result;

end if;

if (arg’low > 0) then

result := resize(arg, arg’high, arg’low);

return result;

end if;

onehalf(-arg’low-1) := ’1’;

if (arg(0) = ’1’) then

if (to_slv(arg(-1 downto arg’low)) >= onehalf) then

result := resize(arg + 1, arg’high, arg’low);

else

result := resize(arg, arg’high, arg’low);

end if;

else

if (to_slv(arg(-1 downto arg’low)) > onehalf) then

result := resize(arg + 1, arg’high, arg’low);

else

result := resize(arg, arg’high, arg’low);

end if;

end if;

if (arg’low < 0) then

result(-1 downto arg’low) := (others => ’0’);

end if;

return result;

end function convergent;
� �

Fig. 10. Complete VHDL source code for the convergent operator.

IV. PERFORMANCE EVALUATION OF THE FIXED-POINT

ROUNDING UNITS

To assess the performance characteristics of the pro-

posed fixed-point rounding units, they are evaluated over the

IW,FW parameters for the following value set; IW (FW) :
4, 8, 16, 32 which defines a set cardinality of 16. For each point

in the parameter set and for both ufixed and sfixed vari-

ants of the designs, the timing (minimum propagation delay)

and area requirements are measured for three representative

FPGA processes: the 90nm Spartan-3 and Virtex-4 5-input

LUT and the 40nm Virtex-6 6-input LUT process. The logic

synthesis tool used is Xilinx Webpack ISE 12.3i.

Throughout the evaluations, the XC3S200, XC4VLX25 and

XC6VLX75T devices have been selected, correspondingly for

each one of the processes. All of them rank amongst the

smallest devices in their respective family. For example, the

maximum capacity of XC4VLX25 is 7,200 slices (which

translates to 28,800 6-input LUTs), 96 18-kbit block RAMs

(BRAMs) and 48 DSP48E datapath blocks. Both BRAMs

and embedded multiplier (Spartan-3)/DSP (Virtex-4/6) blocks

remain unused by the rounding logic.

In the following results, the sfixed fix and ufixed

fix and floor operators are not shown, since their circuits

are optimized to plain wiring by the logic synthesis tool.

A. Speed measurements

All six rounding operators have been designed in VHDL (as

part of the fixed_extensions package) and have been

synthesized for the three selected devices. Fig. 11 depicts the

 2

 3

 4

 5

 6

 7

 8

 9

 10

4,4
4,8

4,16
4,32

8,4
8,8

8,16
8,32

16,4
16,8

16,16

16,32

32,4
32,8

32,16

32,32

E
s
ti
m

a
te

d
 p

ro
p

a
g

a
ti
o

n
 d

e
la

y
 (

n
s
)

Integral and fractional bitwidth (IW,FW)

ceil
fix

round
nearest

convergent

(a) XC3S200 Spartan-3 FPGA.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

4,4
4,8

4,16
4,32

8,4
8,8

8,16
8,32

16,4
16,8

16,16

16,32

32,4
32,8

32,16

32,32

E
s
ti
m

a
te

d
 p

ro
p

a
g

a
ti
o

n
 d

e
la

y
 (

n
s
)

Integral and fractional bitwidth (IW,FW)

ceil
fix

round
nearest

convergent

(b) XC4VLX25 Virtex-4 FPGA.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

4,4
4,8

4,16
4,32

8,4
8,8

8,16
8,32

16,4
16,8

16,16

16,32

32,4
32,8

32,16

32,32

E
s
ti
m

a
te

d
 p

ro
p

a
g

a
ti
o

n
 d

e
la

y
 (

n
s
)

Integral and fractional bitwidth (IW,FW)

ceil
fix

round
nearest

convergent

(c) XC6VLX75T Virtex-6 FPGA.

Fig. 11. Estimated propagation delay (ns) for the fixed-point rounding units.

estimated propagation delay for different integral (IW) and

fractional part (FW) widths for the sfixed versions.

For the examined cases, estimated timings are less than

9ns for the largest configuration (IW,FW = 32, 32). Av-

erage timings vastly improve in newer device generations as

expected: the designs are faster by 67% and 44% on the

XC6VLX75T device compared to XC3S200 and XC4VLX25,

respectively. All circuits have an estimated delay of less

than 3ns on the Virtex-6 device. ufixed designs achieve

better timings to their sfixed counterparts since they tend

to be simpler. This difference ranges from 14.2% (Virtex-

4) to 17.8% (Spartan-3). Further, it should be noted that

certain results appear non-monotonic; for instance specific

(8, 32) operators are faster than their (8, 16) counterparts. This

appears to be due to synthesis tool artifacts, provoked by

imbalanced LUT input distribution, differences in LUT fan-

out loading, routing choices and the usage of specialized

primitives. Specifically, for the case of the XC3S200 device,

a MUXF5 wide multiplexer is being utilized for the (8, 32)

configuration while this optimization is not attainable for

(8, 16).

The nearest sfixed operator consistently has the fastest

hardware implementation. The slowest sfixed operator is

either ceil, fix or round while convergent appears

with the fastest ufixed implementation.

B. Chip area measurements

The chip area requirements are shown in Fig. 12. The

Spartan-3 and Virtex-4 devices share a 5-input LUT architec-

ture, with a maximum of ±1 difference in number of LUTs

for any test case.

The area requirements for the fixed-point rounding units

range from a few to 105 LUTs for the largest integral and

fractional widths (Spartan-3/Virtex-4). The ufixed circuits

require no more than 74 LUTs, or about 27% less than from

the sfixed ones. It seems that this difference is due to

sparsely occupied LUTs; both types of circuits have very

similar demands (a deviation of less than 2 LUTs) on the

6-input LUT Virtex-6 device. Thus, it appears these LUTs are

much more densely populated.

The convergent operator presents the higher area de-

mands irrespective to the arithmetic scheme. ceil is the

smallest operator on the Spartan-3 and Virtex-4 devices,

whereas nearest is such for Virtex-6. The latter also applies

to the round operator for ufixed arithmetic since it shares

a common design with nearest rounding.

C. Comparison of the proposed rounding units against MAT-

LAB Simulink HDL coder

The proposed units have been compared with the VHDL

implementations generated by the MATLAB Simulink HDL

coder IP generator (MATLAB 7.8.0, version R2009a). The

generator (“hdlcoder” for short) produces optimized hardware

realizations of the corresponding MATLAB operators from

internal template models using the numeric_std IEEE

library package. We generalized these models in terms of the

IW and FW generic parameters.

The hdlcoder models differ in several aspects from the

proposed work. Their characteristics include: a) extensive

use of reduction OR trees, b) need for an additional bit of

accuracy, c) use of decrement operations, and d) use of several

additions with zero-extensions. Due to the architecture of

modern FPGAs, reduction ORs prove beneficial due to the

exploitation of hardwired, wide multiplexer primitives. On the

contrary, in some cases the internal accuracy of computations

 0

 20

 40

 60

 80

 100

 120

4,4
4,8

4,16
4,32

8,4
8,8

8,16
8,32

16,4
16,8

16,16

16,32

32,4
32,8

32,16

32,32

C
h

ip
 a

re
a

 (
n

u
m

b
e

r
o

f
L

U
T

s
)

Integral and fractional bitwidth (IW,FW)

ceil
fix

round
nearest

convergent

(a) XC3S200 Spartan-3 FPGA.

 0

 20

 40

 60

 80

 100

 120

4,4
4,8

4,16
4,32

8,4
8,8

8,16
8,32

16,4
16,8

16,16

16,32

32,4
32,8

32,16

32,32

C
h

ip
 a

re
a

 (
n

u
m

b
e

r
o

f
L

U
T

s
)

Integral and fractional bitwidth (IW,FW)

ceil
fix

round
nearest

convergent

(b) XC4VLX25 Virtex-4 FPGA.

 0

 10

 20

 30

 40

 50

 60

 70

 80

4,4
4,8

4,16
4,32

8,4
8,8

8,16
8,32

16,4
16,8

16,16

16,32

32,4
32,8

32,16

32,32

C
h

ip
 a

re
a

 (
n

u
m

b
e

r
o

f
L

U
T

s
)

Integral and fractional bitwidth (IW,FW)

ceil
fix

round
nearest

convergent

(c) XC6VLX75T Virtex-6 FPGA.

Fig. 12. Chip area in number of LUTs for the fixed-point rounding units.

is not carefully optimized. It should be noted, that the proposed

fixs operator reduces to plain wiring, while this is not the

case for the HDL coder.

Fig. 13 illustrates the estimated propagation delay and

area demand for all cases of signed and unsigned rounding

operators. The depicted data points correspond to averages

over the same set of (IW,FW) configurations to the pre-

vious subsections. To perform a fair comparison, a version

of the proposed operators that uses the resize primitive of

 0

 2

 4

 6

 8

 10

 12

ceils
ceilu

fixs
rounds

roundu

nearests

nearestu

convergents

convergentu

A
v
e

ra
g

e
 e

s
ti
m

a
te

d
 p

ro
p

a
g

a
ti
o

n
 d

e
la

y
 (

n
s
)

Fixed-point operator

proposed-xc3s
hdlcoder-xc3s

proposed-xc4vlx

hdlcoder-xc4vlx
proposed-xc6vlx
hdlcoder-xc6vlx

(a) Average propagation delay (ns) over different FPGA devices.

 0

 20

 40

 60

 80

 100

ceils
ceilu

fixs
rounds

roundu

nearests

nearestu

convergents

convergentu

A
v
e

ra
g

e
 c

h
ip

 a
re

a
 (

a
p

p
ro

x
.

n
u

m
b

e
r

o
f

L
U

T
s
)

Fixed-point operator

proposed-xc3s
hdlcoder-xc3s

proposed-xc4vlx

hdlcoder-xc4vlx
proposed-xc6vlx
hdlcoder-xc6vlx

(b) Chip area in number of LUTs for different FPGA devices.

Fig. 13. Performance metrics for the proposed and hdlcoder versions of the
fixed-point rounding units.

numeric_std for the signed and unsigned vector types

was examined, similarly to the hdlcoder models.

In general, the proposed units for signed arithmetic outper-

form the Simulink HDL coder models in terms of estimated

propagation delay. For the Spartan-3, Virtex-4 and Virtex-

6 devices, the proposed units are faster by 31.3%, 27.7%

and 27.6%, respectively. However, only the proposed ceilu

is faster than its counterpart; hdlcoder unsigned units for

round, nearest and convergent excel over the pro-

posed ones. This is due to the nature of unsigned arithmetic,

allowing for case-optimized bit-level manipulations imple-

mented by the hdlcoder. For instance, the implementation

of unsigned convergent by the hdlcoder uses a reduction

OR gate. nearest adds a resized arg to its zero-extended

sign bit using an additional bit of accuracy, allowing for the

elimination of costlier post-processing.

Regarding chip area, the proposed signed operators are

comparable to the hdlcoder models. Specifically, rounds

requires much less area than its rival. However, the hdlcoder

unsigned operators consume much less area by an amount

of 38.5%-67%, from oldest to newest FPGA device. For

the highly capacitive devices of nowadays, the area penalty

to be paid is negligible and certainly justified when it is

accompanied by speed improvements.

It is clear that the proposed designs of ceilu, ceils,

fixs, rounds should be chosen for speed while for the

remaining cases, the mature hdlcoder implementations suffice.

Again, this is the first comprehensive work dealing with

the important issue of finite-precision (fixed-point) rounding.

Additional rounding schemes have been proposed in the past

and are summarized in [28], but tend to be ad-hoc and are less

frequently used to the well-known MATLAB operators.

V. CONCLUSION

In this paper, novel schemes for implementing fixed-point

binary rounding are introduced. The presented architectures

have been described in detail while they have been made freely

available in the form of an RTL VHDL package for inclusion

in user designs. The implementation is completely vendor-

independent using only VHDL constructs compatible with the

IEEE standard and the associated libraries.

Thorough experimental measurements have been shown

over three representative FPGA devices of different families

(Spartan-3, Virtex-4, Virtex-6). Further, the rounding hardware

produced by the Simulink HDL coder, an industry standard,

has been evaluated for comparison purposes on the same

devices. It has been shown that the generic signed-arithmetic

hardware of this work, due to its careful design and optimiza-

tions achieves much better timing (by 30%) with comparable

area demands. It should be noted that with the exception of

operator ceilu, the HDL coder models perform better for

the remaining cases of unsigned arithmetic.

REFERENCES

[1] International technology roadmap for semiconductors. [Online].
Available: http://www.itrs.net/reports.html

[2] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, vol. 38, no. 8, pp. 114–117, April 1965.

[3] P. Coussy and A. Morawiec, Eds., High-Level Synthesis: From Algo-

rithms to Digital Circuits. Springer, 2008.

[4] MathWorks Inc. [Online]. Available: http://www.mathworks.com

[5] Scilab. [Online]. Available: http://www.scilab.org

[6] GNU Octave. [Online]. Available: http://www.gnu.org/software/octave/

[7] S. Roy and P. Banerjee, “An algorithm for trading off quantization
error with hardware resources for MATLAB-based FPGA design,” IEEE

Transactions on Computers, vol. 54, no. 7, pp. 886–896, July 2005.

[8] MATLAB Fixed-Point Toolbox. [Online]. Available: http://www.
mathworks.com/products/fixed/

[9] R. Yates, “Fixed-point arithmetic: An introduction,” Digital Signal Labs,
Technical reference, July 7 2009.

[10] ISO/IEC 9899:TC3 International Standard (Programming Language:

C), Committee Draft, September 2007. [Online]. Available: http:
//www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

[11] S. A. Edwards, “Using program specialization to speed SystemC fixed-
point simulation,” in Proceedings of the Workshop on Partial Evaluation

and Progra Manipulation (PEPM), Charleston, South Carolina, USA,
Jan. 2006, pp. 21–28.

[12] IEEE 1666TM-2005: Open SystemC Language Reference Manual, March
2006.

[13] Algorithmic C data types. [Online]. Available: http://www.mentor.com/
products/esl/high level synthesis/ac datatypes

[14] A. Takach, S. Waters, and P. Gutberlet, “Fast bit-accurate C++ datatypes
for functional system verification and synthesis,” in Forum on specifica-

tion and Design Languages (FDL 2004), Lille, France, Sep. 2004, pp.
337–345.

[15] IEEE 1076-2008 Standard VHDL Language Reference Manual, Jan.
2009.

[16] D. Bishop. VHDL-2008 support library. [Online]. Available: http:
//www.eda.org/fphdl/

[17] P. J. Ashenden and J. Lewis, VHDL-2008: Just the New Stuff. Else-
vier/Morgan Kaufmann Publishers, 2008.

[18] McLab: An extensible compiler toolkit for MATLAB. [Online].
Available: http://www.sable.mcgill.ca/mclab

[19] Embedded MATLAB. [Online]. Available: http://www.mathworks.com/
products/featured/embeddedmatlab/index.html

[20] Product discontinuation notice: AccelDSP synthesis tool.
[Online]. Available: http://www.xilinx.com/support/documentation/
customer notices/xcn09018.pdf

[21] B. L. Gal. GraphLab: high-level synthesis and more. [Online].
Available: http://uuu.enseirb.fr/∼legal/wp graphlab/Home.html

[22] Synopsys Synphony Model Compiler. [Online]. Avail-
able: http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/
Synphony-Model-Compiler.aspx

[23] Simulink HDL Coder. [Online]. Available: http://www.mathworks.com/
products/slhdlcoder/

[24] B. L. Gal and E. Casseau, “Word-length aware DSP hardware design
flow based on high-level synthesis,” Integration, the VLSI Journal,

Elsevier, vol. 62, pp. 341–357, March 2011.
[25] E. Casseau and B. L. Gal, “Multi-mode core design based on high-level

synthesis,” Integration, the VLSI Journal, Elsevier, vol. 45, no. 1, pp.
9–21, July 2011.

[26] Xilinx home page. [Online]. Available: http://www.xilinx.com
[27] D. Bishop, Fixed point package user’s guide. [Online]. Available:

http://www.eda.org/fphdl/fixed ug.pdf
[28] C. Maxfield. An introduction to different rounding algorithms. [On-

line]. Available: http://www.eetimes.com/design/programmable-logic/
4014804/An-introduction-to-different-rounding-algorithms

