Int. J. Innovation and Regional Development, Vol. x, NoXxxxx

Source and | R-level optimizationsin the HercuL eS
high-level synthesistool

Nikolaos K avvadias

Ajax Compilers,

Voutieridi 7 Rd, 11525 Athens, Greece
E-mail: nkavvadias@ajaxcompilers.com
*Corresponding author

Kostas M asselos

University of Peloponnese,

Department of Informatics and Telecommunications,
Terma Karaiskaki, 22100 Tripoli, Greece

E-mail: kmas@uop.gr

Abstract: HercuLeS is an extensible high-level synthesis environment for au-
tomatically mapping algorithms to hardware. It overcomes limitations of know
work: insufficient representations, maintenance difficulties, necesbitpde
templates, lack of usage paradigms and vendor-dependence. te\spatcare
highlighted include automatic IP integration and especially source- and ieterm
diate-level optimizing transformations.

In this context, we present transformational patterns for loop andhersion
optimizations. Further, we focus on constant multiplication and division by
proposing a suitable scheme for their straightforward and decoupledtititiz
in user applications. It is shown that loop optimizations provide benefitp of u
to 32% in cycle performance, while if-conversion delivers an aveiageove-
ment of 6.5%. By applying arithmetic optimizations, a 3.3>56.8peedup over
sequential implementations is achieved. It is also shown that HercuLé&ghlg h
competitive to state-of-the-art commercial tools.

Keywords: Hardware; Integrated Circuits; FPGAs; Field-Programmable Gate
Arrays; RTL; Register Transfer Level; HLS; High-level synthesipti®ization.

Reference to this paper should be made as follows: Nikolaos Kavvadias, Kostas
Masselos (xxxx) ‘Source and IR-level optimizations in the HercuLe&-fégel
synthesis tool’'Int. J. Innovation and Regional Developme¥bl. X, No. X,
PP-XXX—XXX.

Biographical notes: Nikolaos Kavvadias received the B.Sc. degree in physics
and M.Sc. degree in electronic physics from the Aristotle University asth
saloniki, Greece in 1999 and 2002, respectively. In 2008, he retdiis Ph.D.
degree on custom processor design methodologies from the samémiayga
From 2008 to 2012 he was a lecturer at the Department of Computerc8cien
and Technology of the University of Peloponnese, Greece. Sinc2 Ré1s

the co-founding CEO of Ajax Compilers. His research interests include- hig
level synthesis, application-specific/embedded processors andlatbomptech-
nigues.

Copyright(© 200x Inderscience Enterprises Ltd.

2 N. Kavvadias et al.

Kostas Masselos received the degree in electrical engineering frobnikier-
sity of Patras (UPAT), Patras, Greece, in 1994, the M.Sc. degree 81 $§s-
tems engineering from the Institute of Science and Technology, Uitivers
Manchester, Manchester, U.K., in 1996, and the Ph.D. degree §BAT in
2000. Since 2006, he has been with the Department of Computer Seirdce
Technology, University of Peloponnese, Tripoli, Greece, currentiigearank of
Professor, and a Visiting Lecturer with Imperial College London. Higaesh
interests include compiler optimizations, high-level synthesis, high-lesetp
optimization, FPGAs and reconfigurable hardware, and efficient ingian
tions of DSP algorithms.

This manuscript is an extended and significantly altered version of a @1-3
ference publication.

1 Introduction

It has long been observed that human designers’ prodyctioiés not escalate suffi-
ciently enough to match the corresponding increase in ariptexity. Notably, the annual
increase of chip complexity is 58%, while human designergtipctivity increase is lim-
ited to 21% [11]. A dramatic increase in designer produgtiis only possible through
the adoption and practicing of methodologies that raisesgieeification abstraction level,
ingeniously hiding low-level, time-consuming, error-peodetails. New EDA (Electronic
Design Automation) methodologies aim in generating highfgrmance digital designs
from high-level descriptions, a process called High-Le&ghthesis (HLS) [29]. HLS [28]
aims at eliminating human errors and shortening time-toketa The input to this pro-
cess is usually an algorithmic-level description, geriegasynthesizable register-transfer
level (RTL) designs that can be implemented on ASICs (Appiin-Specific Integrated
Circuits) or FPGAs (Field-Programmable Gate Arrays).

HLS approaches have been developed by academic groupspstarstablished FPGA
and EDA vendors. Still, there is need to tackle importanttslomings, inefficiencies and
omissions such as: a) the devise and use of insufficient diedilsie intermediate repre-
sentations (IRs); b) difficulty in maintaining features amigrfacing optimizations; c) man-
dating the use of code templates to obtain decent resuttsplfaeasy to follow paradigms;
d) use of closed formats and e) succumbing to vendor and aésydependence.

In this work, the HercuLeS approach [40] taken to efficiestive all these longstand-
ing problems is presented. In contrast to the vast majofityompetitive technologies,
HercuLeS confronts all of the aforementioned problemst @des the NAC IR [31] which
is an exportable and extensible bit-accurate typed-adgdariguage for whole program
descriptions; b) optimizations can be added as self-coedaexternal modules upon a
moderately-sized HLS kernel; c) HercuLeS does not rely atedemplates since it uses
a graph-based backend; d) open specifications such as Grgphand NAC are used
throughout the HLS process, and e) the generated HDL codenigletely vendor- and
technology-independent. HercuLeS-generated code ddeslgmn vendor-specific fea-
tures such as the presence of patented architecturalédsaembedded memory and com-
putational blocks that would enforce vendor tie-in. It imfan-readable and allows for
automatic third-party IP integration through a truly opeogess.

The remainder of this paper is organized as follows. SeQi@verviews previous
research on the subject. Our motivations and contributie@hénd this work are established

Source and IR-level optimizations in the HercuLeS higktieynthesis tool 3

in Section 3. In Section 4, interesting aspects of HerculreSraroduced. Sections 5 and
6 discuss C- and NAC-level transformation paradigms anid ithh@lementation. Section 7
provides performance metrics that illustrate their effectess despite being disjointed
from the main compilation flow, while Section 8 compares Hé&eS against Vivado HLS
[32] which is a popular flow for FPGA HLS. Finally, Section 9smnarizes the paper.

2 Related work

HLS offerings from EDA vendors include Vivado HLS [32], CptdtC [3], ImpulseC
[10], Synphony HLS [19] and C-to-Silicon [1]. Vivado HLS aats source inputin C, C++
or SystemC and generates RTL hardware in VHDL [25] or VeritiglL [24]. However,
third-party IPs are not automatically integrated and vestgpendent cores are used. Gen-
erally, architectures generated by CatapultC and Impuee@ increased communication
overhead that cannot be alleviated in all cases. Synphorg atid C-to-Silicon primarily
target the ASIC community due to their very high price tagsj@ation versions for them
are not available to the public. None of these tools expofenration using open spec-
ifications; textual IRs are not accessible for processirdy ranipulation by third-party
tools.

Some HLS tools target specific platforms, for instance ussighs are utilized as
PICO/ARM coprocessors in [30]. Despite the convenience 6ICJ20] is identified
in [30], the actual input to the HLS engine is the low-levehehine-dependent RTL IR.
LegUp [12, 13] provides a rich environment for experimentatut produces low-level,
vendor-specific HDL code. DWARYV [4] is a hardware compiletiwa CoSy-based fron-
tend [5] that can generate a reconfigurable processor-lagpdéeimentation.

Publicly released tools producing generic HDL include R@JC6], SPARK [17, 18]
and GAUT [6]. ROCCC [16] targets streaming C applicationsadaed-forward pipeline.
Itis restricted to perfectly nested constant-bound lo@&UT [6] accepts a C/C++ subset
and user constraints (total latency, maximum clock periodxtract full parallelism. It
is incapable of handling non-static loops. SPARK only haadbops with fixed constant
iteration counts, rendering most designs unfeasible.

Tools with web interface access or recent demo versionsidecl C-to-Verilog [2],
TransC [21,22] and HerculLeS. C-to-Verilog [2] is an LLVM [verilog backend present-
ing limitations in accessing local or global arrays withimétions. TransC [21] supports
streaming constructs for data exchange and process syrizdtion, however through non-
standard C-like code requiring the user to significanthedifrom C programming.

2.1 Summary and comparison of HLS systems

To establish a comparative summary of state-of-the-art,Hi&Sattempt to quantify
multiple performance evaluation criteria:

Abstraction: abstraction level supported for the sourcguage.

Types: richness and range of accepted data types.

Explore: rapid design space exploration capabilities.

Verify: verification aspects such as automatic generatiselbfchecking testbenches,
assertion insertion, code coverage.

Results: quality of results in terms of speed, area and power.

4 N. Kavvadias et al.

E E E E
T T T T
V. V. V. V.
A A A A
R R R R
L L L L
D D D D
CatapultC Vivado HLS ImpulseC C-to-Silicon SynphonyC
E E E E E
T T T T T
V. V V. V. V.
A A A A —A
R R R R R
L L L L L
D D D D D
GAUT SPARK ROCCC LegUp HercuLeS

Figurel HLS tools comparisorAbstraction;Types;Explore;Verify; Results;Documentation;
Learning).
e Documentation: available tutorial, user-oriented and per-oriented materials.
e Learning: estimated learning curve.

Fig. 1 uses Kiviat graphs to visualize the comparative aislgf the tools across mul-
tiple independent dimensions. Certain tools have beentemndue to lack of sufficient
information for the evaluation process, source languag@énd issues or for not generat-
ing correct RTL code.

HercuLeS achieves close results (wins and losses) to Vikdd®) which is known to
compare well with the best-known open-source HLS tool, LegMentor CatapultC and
SynphonyC are also considered strong offerings. ROCCC stamntool with version 1.0
based on the SUIF compiler infrastructure and 2.0 on LLVM{resents a steep learning
curve. GAUT and SPARK fall behind, mainly due to lower ANSI @ngpatibility, and
their runtime instability. GAUT achieves exceptional meniance for DSP code using
loop-level pipelining but does not perform well on contorlented code.

3 Motivation and contribution

Commercial closed-source HLS tools as Vivado HLS [32] doprovide for user in-
terfacing of source language frontends, custom analysiptimization passes, and target
architecture backends. At the same time, academic opawesbilLS tools as LegUp [12]
offer a transparent approach to user involvement, howdsrig only practical through
the use of their established data structures and API (Aajpdic Programming Interface).
No additional interaction points are established for etipgrand importing to and from
third-party tools, either open-source or not, such as eaterode analyzers, optimizers,
annotators and hardware IP integrators.

In contrast to competitor tools, HercuLeS [33] is the onlgthlevel synthesis environ-
ment that allows seamless interfacing of user tools to theecgo NAC, Graphviz CDFG
and HDL (VHDL) levels. This even allows for competitor toasutilize HercuLeS as a
means for pre-optimizing source code or post-optimizirggdenerated HDL to improve
their results.

As an example, consider the segmemt di vby60(i nt x){return x/60;}
for performing an integer/truncating division by 60. Tyali¢iLS tools have the following
approaches in dealing with this segment:

Source and IR-level optimizations in the HercuLeS higktieynthesis tool 5

-
int divby60(int x) {
int q, M=-2004318071, c;
long long int t, u, v;
t (long long int)M=+ (long long int)x;
t >> 32;
q+ X
q >> 5;
x >> 31;
q +c;
urn (q);

b L | T T | 1]

T 00000

e

}

- J

Figure2 C code for truncating division by 60, optimized ki v.

Tablel Using HercuLeS' optimized constant division in Vivado HLS.

Metric Vivado Vivado | % improvement
HLS (unopt.) | HLS (opt.)
LUTs 147 78 46.9
FFs 123 81 34.1
DSP blocks 4 4 0.0
SRL shifters 9 0 100.0
Propagation time (ns) 3.169 2.927 7.6
Number of cycles 8 8 0.0

¢ perform the division in floating-point arithmetic which isteemely costly

e use a variable divider which again is an overkill, both amad timing-wise (32-33
cycles are required for a typical radix-2 divider). This ieat LegUp does in addi-
tion to generating non-portable, vendor-specific codenfuitera-specific memory
components)

e use a suboptimal algorithm to perform the constant divigiéwado HLS)

e are unable to process the request.

On the contrary, HercuLeS allows the interfacingafi v2, an optimizer for constant
division generating either C or NAC code. This way, an optigdicircuit using only integer
arithmetic with a double word-size multiplication is us&8]. The optimized C code is
shown in Fig. 2.

Timing (minimum propagation delay) and area metrics hawenhgbtained using the
2013.2 Vivado Design Suite for the XC7K325T-FFG900 devi@espeed grade). As can
be seen in Table 1, Vivado HLS underperforms if using its olge@hms, while benefits
significantly from using thé&di v-based optimizer of HercuLeS.

In this paper we argue that transformational frameworksbeansed at multiple levels
of the HLS process. Further, we investigate syntacticatresions for developing self-
contained optimizations that can be plugged-in to any hardvweompiler that exposes
a textual IR. These grammatical overrides are applied testhece or IR grammar and
impose source/IR transformation rules [43]. Their sultghis manifested by four distinct
optimization cases: a) source-level loop optimizatiofdate if-conversion [45], ¢) single
constant multiplication [36, 37] and d) single constantision by providing a strongly-
typed variant of [38].

@htt p: // sour cef or ge. net/ proj ect s/ kdi v/

6 N. Kavvadias et al.

msic) pst)

optimized C
gce

thirdIZJar‘(y
I)

frontend

—/

GIMPLE dump

gimple2nac

[NAC optimizer]

[IP integration transformations J
optimized NAC

nac2cdfg

[Graphviz CDFGs)

[HW |
. “ cdfg2hdl
RTL VHDL) (testbench Lrep/ons_J ANSI C

Figure3 The HercuLeS flow.

4 HercuLeSbasics

HercuLeS automatically generates customized hardwargtesded FSMDs (Finite-
State Machines with Datapath) [29] in VHDL. Essentially,reld_eS translates programs
in the NAC IR to a collection of Graphviz CDFGs (Control-D&tw Graphs) which are
then synthesized to vendor-independent self-containedIDL. HercuLeS is also used
for push-button synthesis of ANSI C code to VHDL.

4.1 Overview

The basic steps in the HercuLeS flow are shown in Fig. 3. C cogassed to GCC
for GIMPLE dump generation [8], following an external soeHlevel optimizer. Textual
GIMPLE is then processed lgimple2nac alternatively the user should directly supply a
NAC translation unit (TU) [31] or use an owned frontend.

NAC operations specify a mapping from a setrobrdered inputs ten ordered out-
puts as follows:ol, ..., om<= oper il, ..., in; where:oper specifies
the IR-level instructionpl, ..., omarethen outputs,andl1, ..., inthenin-
puts of the operation. A declared object is eithgfl @bal var (a global scalar or array
variable),l ocal var (a local),i n or out (input or output procedure argument). The
memory access model defines dedicated address spacesgyes@that both loads and
stores require an explicit array identifier. An indexed lo@ad (b = a[i];) is trans-
lated asb <= load a, i;,whileanindexedstora(i] = b;)as:a <= store
b, i ;. Procedures are non-atomic operatiqng) <= sqrt(x); computeq./z].

Various optimizations can be applied at the NAC level; pedplransformations, if-
conversion, and function call insertion to enable IP indéign. Heuristic basic block
partitioning avoids the introduction of excessive critipaths due to operation chaining.
The core of HercuLeS comprises of a frontemédq2cdfg and a graph-based backend
(cdfg2hd). nac2cdfgs a translator from NAC to flat CDFGs represented in Grap[8jiz

Source and IR-level optimizations in the HercuLeS higktieynthesis tool 7

Table2 FSMD I/O interface.

Signal Direction | Description

clk 1 signal from external clocking source

reset I asynchronous (or synchronous) reset

start 1 enable computation

din 1 data inputs (generally, multiple)

dout O data outputs (generally, multiple)

r eady O the block is ready to accept new input

val id @) asserted when a certain data output port is streamed-
out from the block (generally it is a vector)

done O end of computation for the block

cdfg2hdlis the actual synthesis kernel for automatic FSMD hardwama iGraphviz CD-
FGs to VHDL and self-checking testbench generation.

nac2cdfgis used for parsing, analysis and CDFG extraction from NAGgmms.
Multiple approaches to global or local static single assignt (SSA) form construction
are supported [26, 31]. Data flow analysis uses on-demarghgesachability checking.
cdfg2hdimaps CDFGs to an extended FSMD MoC (Model of Computation). [Ebr
scheduling operations to specific states, sequentialraesvare ASAP or ALAP schedul-
ing can be used. ASAP and ALAP can be combined with fast ojp@rahaining for better
state workload balancing.

An ANSI C backend allows for rapid algorithm prototyping aNAC verification.
VHDL code can be simulated with GHDL [7] and Modelsim [15] ayhthesized in Xilinx
XST and Vivado Design Suite [23] using automatically getentacripts.

4.2 Extended FSMDs

The FSMDs of our approach use fully-synchronous convestand register all their
outputs [27]. The generated FSMDs are generalized FSMzdnting embedded actions,
with: a) support of array input, output and streaming 1/Otpob) communication with
embedded block and distributed LUT memories, ¢) latensgfisitive local interface be-
tween caller and callee FSMDs, and d) interfacing to extdfhalocks. 1/0 port usage is
summarized in Table 2.

The FSMDs use: + 2 states, where is the number of required computational states.
The two overhead states represent CDFG source/sink nodespdsible optimization is
to merge the sink state with its immediate predecessors.

4.3 Hierarchical FSMDs

A two-state protocol describes proper communication bebnealler and callee FS-
MDs. The first state prepares the communication, while tloerse is an “evaluation”
superstate where the entire computation applied by theeeBIEMD is effectively hidden.

The caller FSMD performs computations where new values ssigiaed tox_next
signals and registered values are read fromeg signals. To avoid the problem of mul-
tiple signal drivers, callee procedure instances produe¥al data outputs that can then
be connected to register inputs by hardwiring tothe@ext signal. Fig. 4 illustrates the
established interface and state transitions that contoallla(n) <= isqrt(x);) to
integer square root evaluation.

STATE_1 sets up the callee instance. Callee operation takes pl&t4PBRSTATE_-

2. When the callee terminataseady is raised. Since callegt ar t is kept low, output

8 N. Kavvadias et al.

[STATE_1) c_start=1

v

‘/ SUPERSTATE_2 /\\ ¢_ready ==

c_start

X_reg callee
c_ready \m = isqrt(x)

< c-done (_) ¢ start==0

/

m_next c_ready ==0 /;/// 7'\“‘\\‘”,/ m_next =
[STATE_3 &
m_reg m_eval Ll start = \\\ % m_eval

) (@) Interface. (b) State transitions.
Figure4 Caller-callee communication.

vy

caller

index

»

- Data
mysig_next | memory

index N
STATE 1 | Data

mysig_reg memory

FSMD
te_next mysig

- STATE_1

mem_we = 1

T mem_addr = index)
'(STATE_1 > wstate_next = not (wstate_reg) STATE_1) mem_addr = index

mem_din = mysig_reg
wstate_reg == 0 Wwstate reg==1
| mysig_next = mem_dout

,x /
GATE_Z }
__

(a) | oad mechanism. (b) st or e mechanism.
Figure5 Communication with on-chip memories.

data can be transferred to theregister via itan_next input port. Control then is handed
over toSTATE_3. The callee instance follows the established FSMD interfaeading
X_reg and producing its result im eval .

4.4 Communication with embedded memories

In NAC, thel oad andst or e primitives are used for describing read and write mem-
ory access. We will assume a RAM model with write enable, @pagate data inpud{ n)
and output dout) sharing a common address partvaddr). To control access to such
block, a set of four non-trivial signals is needed: a writatde signal fem _we), and the
corresponding signals for addressing, data input and autpu

Fig. 5 depicts the implementation of memory access operatiS@ynchronousoad
requires the introduction ofwai t st at e register. This register assists in devising a dual-
cycle sub-state for performing the load. During the firstieyaf STATE_ 1 the memory
block is addressed. In the second cycle, the requested dataade available through
mem dout and are assigned to registarsi g. This data can be read fronysi g_r eg
during STATE 2. st or e raisesmem we in a given single-cycle state so that data are
stored in memory and made available in the subsequentratatbine cycle.

Source and IR-level optimizations in the HercuLeS higktieynthesis tool 9

split local
NACL variable
declarations i
remove
nac2cdf
redundant g 9
operations i
complete RTL
cdfg2hdl |—» VHDL
localize local introduce .
> declarations to
variable —» |P operator ’ 5
: : earliest site
declarations function calls
add IPs HDL
builtins.txt loproject
compare to

IP database
Figure6 Automatic IP integration in HercuLeS.

4.5 IP integration

HercuLeS allows for automatic IP integration given thatuker supplies built-in func-
tionalities. To illustrate this approach, IP blocks forreg/unsigned addition/subtraction,
multiplication, division and remainder have been design€de HercuLeS flow user is
able to import and use an owned IP by the following process:

1. Implement IP with expected interface and place in propbdsectory.

2. Add corresponding entry in a textual database.

3. Use TXL transformations [34] for replacing an operata by a black-box function

call via a script.
4. Alist of black box functions is generated.

5. HercuLeS automatically creates a hierarchical FSMD thi¢hrequested callee(s).

Fig. 6 illustrates the combined TXL/C approach. The first st&ps apply preprocess-
ing for splittingl ocal var declarations and removing those that are redundant or dnuse
Then, they are localized and subsequently procedure cabifatk-box functions are in-
troduced. These routines are the actual built-in functidhshe corresponding built-ins
are listed in the IP database, an interface-compatible Vitijlementation to HercuLeS
caller FSMDs is assumed. Theardfg2hdlautomatically handles interface generation and
component instantiation in the HDL description for the eaFSMD description. In addi-
tion, simulation and synthesis scripts already accounthieiP HDL files.

This approach is also valid for floating-point computatiamile both pipelined and
multi-cycle third-party components are supported.

5 Sourcelevel transformations

A crucial characteristic of HercuLeS against rival toolshie capability of adding ex-
ternal modules operating at the C source, NAC IR, and GrapBiFG levels. Key to
this scheme is the exposure of self-contained textual septations at the appropriate lev-
els of abstraction. This is advantageous since it allowsdmtain a stable kernel while
experimenting with transformations for code restructyrioptimization, and automatic 1P
integration.

Since NAC is a rather low-level representation for applyowp-oriented or other high-
level transformations, a collection of autonomous C-toedectransformation passes has

10 N. Kavvadias et al.

Table3 Supported loop transformations.

Transformation Description Params
bump Alter loop boundaries by an offset offset, step
extension Extend loop boundaries lo, hi
reduction Reverse the effect of extension -
reversal Reverse iteration direction -
normalization Convert arbitrary to well-behaved loops —
fusion Merges bodies of successive loops -
coalescing Nested loops into single loop -
unswitching Move invariant control code -
strip mining Single loop tiling tilesize
partial unrolling Partially unroll a loop by a factor uf
full unrolling Fully unroll a loop -
while-to-for
do-while-to-for
split
O e rations ™ i emlE - - > reversa1 —»{ nomalization
reduction
. ..—~—»~<——“"‘—<*-—-4_4_k<-4447
coalescing = -
fusion 5‘_(1‘}[) combiner - - - par‘tla; =
mining unrolling = - - test.opt.c

full
unroll

Figure7 Flow of TXL transformations for C code optimization.

been developed in TXL [34]. TXL provides the means for depilg syntactical exten-
sions and rule-based transformations without the needgosexinternally built, matched
and substituted ASTs to the user. Further, TXL allows foteagarsing, meaning that
internal variants of a grammar can be exploited to simplifsilgses and optimizations.

This high-level optimizer supports generic restructuriransformations (GRTs) and
loop-specific optimizations (LSOs). GRTs include code céealization for removing pro-
gramming idioms, arithmetic optimizations, syntactic wensions among iteration sche-
mes, and statement local vectorization. Loop-specifioiiptitions [35] are summarized
in Table 3.

Fig. 7 illustrates a possible optimization flow using TXL pas. Certain decisions
in this flow regard the ordering of transformations, sin@g doop coalescing prerequi-
sites loop normalization. It should be noted that strip mgnéliminates chances for loop
unrolling, and should not be applied unconditionally tdisteops. Further, it is not mean-
ingful to use both partial and full loop unrolling. User d&ons also involve the proper
selection of tile size, vector size and unroll factor values

Fig. 8 illustrates the TXL transformation for strip miningl]. This rule is provably
safe and can be applied in all occasions. Strip mining isiegiple when the length of
vector-like processing (VL: Vector Length) is unknown atgale time, and is possibly
larger than the hardware parallelism expressed as TS (iti&).ST'S is usually defined as
the maximum vector length (MVL) of the underlying microaitelature. It allows generat-
ing code such that each vector operation is performed farestkat is less than or equal to
MVL. The TXL transformation creates a single strip-minedpahat is parameterized to
handle first a portion smaller than TS and for all remainiegations, portions of the loop
equal to TS, until VL is consumed.

Source and IR-level optimizations in the HercuLeS higkteynthesis tool 11

-
rul e replaceStri pM ningLT TS [nunber]
replace $ [repeat decl _or_stnt]
"for (Exprl [expr]; Expr2 [expr]; Expr3 [expr])
{ Stnts [decl _or_stntx] }
MoreStnts [decl _or_stnt]
deconstruct * [expr] Exprl
Ix [id] = Expr4 [primary]
deconstruct * [expr] Expr2
Ix2 [id] < Expr5 [primary]
deconstruct * [expr] Expr3
Ix3 [id] = 1x4 [id] + Expr6 [prinmary]
construct Newx [id] Ix [_ "sm [!]
construct VL [id] Ix [_ "vI] [!]
construct Low [id] Ix [_ "low [!]
% Al low only for the innernopst |oop to be converted
deconstruct not Stnts _ [for_stnt]
where Ix [= Ix2] where Ix [= 1x3] where Ix3 [= Ix4]
by
int Low’'; Low = Expr4; 'int VL;
% Fi nd the odd-sized piece.
VL = (Expr5-Exprd4) %TS;
“int New x;
% Qut er | oop.
"for (Newl x=-1; Newl x<(Expr5-Expr4)/TS; New x=New x+1)
% Runs for length VL.
{ "for (Ix=Low, |x<LowtVL; |x=Ix+EXpr6)
% Mai n operation(s).
{ Stnts }
% Start of next vector.
Low = Low + VL;
% Reset the length to nax/til esize.
VL =TS, }
MoreStnt s
end rul e

Figure8 TXL transformation rule for strip mining.

5.1 Example

As a running example to applying syntactical loop transfations according to the
proposed flow in Fig. 7, the general matrix multiplicatiomre is usedgenrm c), which
is part of PolyBench [42]. The effect of alternative confifions regarding the sequence
and selection of loop transformations is shown in Fig. 9.

6 NAC level transformations

In this section, we present self-contained optimizatiamstifie NAC grammar. The
TXL grammar for NAC uses different tokens for targetlj and source operandsdent).
Further, TXL assists in developing syntactic extensionsAE€. The corresponding NAC
dialects are then used in intermediate stages of thesddrarations since TXL rules that
convert patterns to replacements starting from the origagtern are unfeasible. TXL
coding enforces certain transformation paradigms sucleasiction localization, global-
ization and statement vectorization [44] and scalariredi®stepping stones for developing
custom transformations.

12 N. Kavvadias et al.

p
for (i =0; i <N; i++) {
for (j =0; j < NI j++) {

Qil[j] *= beta;
for (k = 0; k < NK k++) {
}};Zli][j] += alpha » A[i][k] = B[K]I[j];

(a) Initial code.

#define MN(x, y) ((x) < (y) ? (x) : (¥))
int i_coal 4snt;
for (i_coal 4snl=0; i _coal 4sml<4096; i _coal 4snil=i _coal 4snl+8) {
for (i_coal 4=i _coal 4sml; i _coal 4<M N(4096, i _coal 4snLl+8); i _coal 4=i _coal 4+1) {
i =i_coald4 / 64, | = i_coal4 %64,
Cillj] *= beta;
#define MN(x, y) ((x) < (y) ? (x) : (¥))
int k_snt;
for (k_sml=0; k_sml<64; k_sml=k_snl+8) {
for (k=k_sml; k<M N(64, k_snl+8); k = k + 1) {
}};Zl}i][J'] += alpha » A[i][k] = B[K]I[j];

(b) Following loop normalization, coalescing and strip minin
e 2
int i_coal 4;
for (i_coal 4=0; i_coal 4<4096; i _coal 4=i_coal4 + 1) {
i =i_coald4 | 64, j = i_coald %64,
qillil *= beta;
{

qillj] += alpha « A[i]1[0] * B[O][j]:
dilli] += alpha « Ali1[1] * B{1][j];

}}dim] += alpha » A[i1[63] * B[63][j];

(c) Following loop coalescing and full unrolling.

int i_coal 4;

for (i_coal 4=0; i_coal 4<4096; i _coal 4=i _coal 4+1) {
i =i_coald4/ 64, | = i_coal4 %64

I ;

k =0; k <863;) {

] = alpha « A[i][k] * B[K][j];

= alpha » ALi][k] = B[KI[]];

k <64 k =k +1) {
1[i1 += alpha = Ali][k] * B[K][j];}}

(d) Following loop coalescing and partial unrolling.
Figure9 genm c exposed to different configurations of the loop transformation flow.

6.1 If conversion

If-conversion reduces control- to data-dependence [45AC provides themuxzz
guaternary multiplexing operation that implements a ctiowal move resolving both con-
ditions of the predicate.

Fig. 10 illustrates the flow of the corresponding TXL tramgfation applied to SSA
NAC. First, control-flow regions amenable to dependence@mion are identified. Two
new variable declarations are needed for keeping the ganpkrands of the nemuxzz
operation. At this point, these declarations use dummy tiggas. Then, intermediate
variable declarations are moved to their declaration sifsce SSA form is used, these
declarations always immediately precede their definitioth @an be easily matched. The

Source and IR-level optimizations in the HercuLeS higkteynthesis tool 13

NAC control-flow localize fix new move localvar NAC with
— region > localvar |—» localvar data |—» declarations to muxzz
transformation declarations types earliest site operations

Figure 10 Flow of TXL transformations for if-conversion.

ooV Gl introduce declarations to imized
NAC | split localvar kmul/kdiv concatenate earliest site optimize:
declarations reduncljant Iocalv?r) procedure NAC files and inline NAC NAC
operations declarations . ;
calls translation unit

kmulldivltxt/

kmul/kdiv NAC
code generator

Figure11 Flow of TXL transformations for constant multiplication/division.

following step fixes the transfer operand declarations éotyipe of their target operand.
Then, local variable declarations are finally moved to théies site in the current scope
in order to be compatible with the NAC grammar.

6.2 Constant multiplication

Multiplication by an integer constankifiul) allows for significant speed improvement
and area reduction since a variable multiplier needs notsled.uContemporary FPGAs
offer high-speed embedded multipliers, however it is akveglevant to microprocessors
without full-range hardware multipliers.

TXL is unsuitable for extensive numerical computation stthe actual NAC code gen-
erator for the constant multiplication is written in C. Fid. illustrates the combined TXL
and ANSI C approach. The first two steps apply preprocessingdlitting| ocal var
declarations and removing those that are redundant or dnuBeen, they are localized
and subsequently procedure calls to specialized constaltipfitation routines are intro-
duced. These routines are then generated by the C tool andtemated to the NAC IR of
the application. The optimized routines can be inlined airtball site to eliminate argu-
ment passing overheads. Constant division optimizatiapjdied by using the exact same
process.

6.3 Constant division

A workaround for constant divisiorkgiv) in current processors uses a multiplication
with the multiplicative inverse (or ‘magic’ humber) of thertstant followed by a number
of adjustment steps [38, 39].

Integer division instructions are either omitted from modeicroarchitectures or tend
to be a speed limiting factor. While the Intel E6xx series eypla radix-16 divider,
there is no easy way to incorporate a high-performance @ividFPGA implementations
of soft-core processors. Nios-Il and Microblaze incorperaulti-cycle radix-2 dividers;
LEONS [46] uses a division step primitive to achieve simjp@rformance. For a generic
division routine, typicallye; NV 4 of f set cycles are spend for the calculation, wittbeing
the cycle count for the inner loogy the number of calculation stagdd’(log. (k) for k-

14 N. Kavvadias et al.

CONST-DIV-SIGNED
begin
declarel ocal var sW q, M c;
declarel ocal var s2W t, u, v;
LAB_1:
/1 S1. Load magic constant.
M <= | dc m;
/1 S2. Perform signed high multiplication.
t <=ml M n;
u <= shr t, W;
q <= trunc u;
/1 S3. Add or subtract n from g and store in g.
if d > 0andm < 0then
g <= add q, n;
elseif d < 0 andm > 0 then
g <= sub g, n;
endif
/1 S4. Quotient correction steps using dividend and divisor sign.
if s > Othen
g <= shr q, s;
endif
c <= shr n, W-—1;
q <= add q, c;
if d < 0then
c <= setne n, 0;
g <= add q, c;
endif
y <= nov g;
end

Figure 12 Pseudocode for the signed constant division generator.

radix division and -bit word-lengths) andf f set denotes the sum of pre- and post-loop
overhead cycles.

We have modified the aforementionkdiv algorithm for use with strongly-typed low-
level languages as shown in Fig. 12. Past implementatiaisitpusly allow for language-
and machine-specific behavior when interpreting certaseséor type casting and promo-
tion. In our case, specialized operations such assthexi extended shift immediate
operation in [38] are not needed. Our algorithm producescdigput for the equivalent of
a high multiplication grul hi in [39]) implemented by a 64-bitul followed byshr .
Alternatively, NAC can be extended with a dedicated hightiplitation.

The code generator accounts for the generic case of a conléigsor d. The magic
number is denoted by, s is a correctional shift amount and is the bitwidth of a machine
word. Input dividendn and quotienty both have a width of/. Emitted NAC code
is shown in monospace font. First, the algorithm generagetadations foll ocal var
variables. Following this, it generates thdc andrmul operations, thadd if d > 0 and
m < 0, orthesub if d < 0 andm > 0. Then, the extended immediate shift concatenating
the carry/borrow bit by the previous operation is gener#ted> 0. Additional quotient
correctional steps are generated by using a regular shifediate and an increment.

7 Performance evaluation of the transfor mational schemes

To assess the performance of the proposed transformatonaines, we demonstrate
the following:

1. Effect of loop-oriented transformations.

2. Effect of if-conversion on benchmark cycles.

3. Machine cycles for optimizekimul/kdiv

Source and IR-level optimizations in the HercuLeS higkteynthesis tool 15

Table4 PolyBench applications with absolute cycle counts on VEX.

Benchmark| Description Reference| Full loop

unrolling
2mm two matrix-matrix multiplications 329566 65635
3mm three matrix-matrix multiplications 491558 92991
atax matrix transpose and vector multiplication 72729 10519
bicg subkernel of BICGStab linear solver 51802 40122
doitgen reduction sum of a 3R 2D matrix 373942 158586
dynprog dynamic programming problem solver 65635 230644
gemm general matrix-matrix multiplication 1478041 155712
gesummv | scalar, vector and matrix multiplication 43669 32477
mvt matrix-vector product and transpose 57048 97042
symm symmetric matrix-matrix multiplication 186558 209593
syr2k symmetric rank-2k update 1735512 | 4008928
syrk symmetric rank-k update 1452630 | 3992287
trmm triangular matrix-matrix multiplication 1368907 | 1392347

4. Estimated timing and area demands for hardware impleatiens of the latter.

For evaluating scenario 1, a cycle-accurate simulator fioex@erimental VLIW mi-
croarchitecture was used. For scenarios gH8ple2naovas used and machine cycles are
measured on a cycle-accurate compiled C model of the NAGalirhachine.

The timing (minimum propagation delay) and area requirdmare estimated for the
40nm Virtex-6 6-input LUT FPGA process. The logic synthesis toséd is Xilinx Web-
pack ISE 12.3i. Throughout the evaluations, the XC6VLX7%Vide has been selected,
ranking among the smallest devices in the respective fartighould be noted thatdiv
hardware uses a 32-bit multiply producing a 64-bit resuljolv nominally requires 4
DSP48E datapath blocks (3 if further optimized).

7.1 Effect of C-level transformations

In the first set of experiments, the loop transformation eags evaluated over a pa-
rameterized VLIW architecture named VEX [47, 48]. The VEXlthain provides the
means to target a wide class of embedded VLIW processorssiby a complete ANSI C
compilation toolset and a cycle-accurate simulator. VEX e@nfigured as a single-cluster
VLIW machine featuring eight execution slots. The VEX salled attempts to schedule
the maximum available number of independent operationarallel, performing a number
of loop-oriented optimizations.

Table 4 summarizes the PolyBench benchmarks [42] that hese bsed in this eval-
uation. It also provides the exact absolute cycles for VEXtif@ three distinct cases of
using reference and then optimized code by full loop urmiglliin order to obtain these
measurements, the same transformation script is appliedldapplications.

Many applications have significant gains, even by followihg strategy of uncondi-
tionally applying the loop transformation sequence. A etdeok would unveil that some
applications are hampered by the generic form of strip nginivhich increases the looping
overhead. Overall, a 32% improvement on geometric mearchis\zed.

7.2 Effect of if-conversion

To analyze the effect of the if-conversion transformati@set of small integer/fixed-
point kernels has been selectddtunzip/bitzip(data interleaving/(de)compression algo-
rithm [49]), cordic (multi-function fixed-point CORDIC)ivider (sequential division algo-

16 N. Kavvadias et al.

Table5 Summary of NAC abstract machine cycles for the given benchmarks.

Bench. Cycles for each case
Seq Seq+ | %diff ASAP | ASAP+ %diff
ifconv ifconv

bitunzip 193536 | 191488 11 80896 79872 1.3
bitzip 197632 | 197632 0.0 96256 96256 0.0
cordic 667526 | 599892 | 10.1 | 421161 | 291561 30.8
divider 1375402 | 1375402 0.0 | 970651 | 970651 0.0
easter 4318 4200 2.7 4018 3600 104
eda 768 736 4.2 512 480 6.3
float2half 30208 28339 6.2 21208 19339 8.8
half2float 983042 | 917506 6.7 | 655362 | 589826 10.0
perfect 528268 | 527248 0.2 | 527758 | 526228 0.3
sieve 463058 | 463058 0.0 | 463047 | 463047 0.0

rithm), easter(Easter date calculation®da(Euclidean distance approximatiofipat2half
and half2float (conversion to/from 16-bit floating-point formaperfect(perfect number
detection) andieve(prime sieve of Eratosthenes).

Reported machine cycles have been collected in Table 5 asg@ither a sequential or
a vectorized abstract machine model based on NAC. The tateris equivalent to ASAP
scheduling of scalar operations. For each benchmark, meghsycles with/without the
use of if-conversion are given in columns 2-3 and 5-6, respay for the two models.
Columns 4 and 7 report the percentage difference betweearathes in the two preceding
columns. From these results, it can be deduced that if-csioremoderately improves
cycle performance: by 3.1% for sequential and 6.8% for ASéieduling. Some bench-
marks do not benefit at all since they do not incorporate @pathat can be matched by
the respective TXL rulescordicis the application with the most profound impact (10.1%
and 30.8% improvement, respectively).

7.3 Timing measurements for implementing kmul/kdiv

Fig. 13(a) illustrates the number of machine cycles for aijand unsignedmul/k-
div among 32-bit quantities for all divisors up to 64. It can bers¢hat multiplication
(kmul u, kmul s) requires 2—8 cycles to complete, while division takes 2rées. It is
assumed that the multiplier and divider are separable lifg usgistered outputs. In aver-
age,krmul operators require 16.8% and 25.4% less cycles than theatespledi v ones.
Still, the benefit from avoiding division is significant, dapling on the specific profile of
a given application.

It should be noted that thiediv cost is amortized to the maximum of 9 cycles irre-
spective to the specific constant. It compares favorabliig®BP-33 cycles usually needed
for wordwise integer division. On the other hatkapul requires an increasing number of
operations for certain larger constants.

The discusseémul/kdivoperators have been implemented in RTL VHDL using Her-
cuLeS HLS. For spacing reasons, detailed results are owlyrsifior signed arithmetic.
Fig. 13(b) and Fig. 13(c) depict the estimated propagatedaydfor differentkmul/kdivop-
erators for the same set of factors: {1:64}, respectivelg Wdve investigated two possible
intra-unit schedules: a sequential with one NAC operatimuaing per machine cycle and
chained ASAP schedule where the entire computation ispsdid into a single machine
cycle.

As expected, the estimated propagation delay is higherhircase of the chained

Source and IR-level optimizations in the HercuLeS higkteynthesis tool 17

10 ey
[kmblu kmuls
9 .
8
& 7
[S]
3 6
o !
£ 57
3
s 4
3
2
1 L L L L L L L L L L L L L L L
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Constant value (range 1:64)
(a) Machine cycles for constant mul/div.
5| [Seq. —— Chained —— | 1
4+ |
3 L 4

Average estimated propagation delay (ns)

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Constant value (range 1:64)

(b) Estimated propagation delay (ns) for traulunits.

18 R N
[Seq. —— Chained |

16 5
14 + 1
12 + H

10

o N M OO
T

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Constant value (range 1:64)

Average estimated propagation delay (ns)

(c) Estimated propagation delay (ns) for #div units.
Figure 13 Timing measurements fimul/kdivunits on the XC6VLX75T Virtex-6 FPGA.

schedule by 40.1% and 19.9%, respectively for multiplaatnd division. Due to the use
of a combinational wide multiplier using 4 DSP48E blocksyiglon is slower by 5.%
and 4.2« compared to multiplication. In the context of a custom aeatture and not a
microprocessor, the chained version of the units may beepesf over the sequential one,
since it reduces the total computation time by a factor ok3aBd 5.9, respectively for

18 N. Kavvadias et al.

300 = e Ly

27 seq/luts chained/luts -
St seg/regs chained/regs

250 1

225 B
200 r
175 +
150
125 + SRR RN
100 F¥p.
75 |
50
25 H

Chip area (number of LUTs/registers)

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Constant value (range 1:64)

(a) Areaforknul s.

450
400 |
350 |
300 |
250
200
150 o [AANR W
100 §
50

~Chained/luts -
chained/regs

‘ sedllufs :
seq/regs

Chip area (number of LUTs/registers)

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Constant value (range 1:64)

(b) Area forkdi vs.

Figure 14 Chip area in number of LUTs and registers for the constant multiplicatiisicin
units on the XC6VLX75T Virtex-6 FPGA.

kmul/kdiv

7.4 Area measurements for implementing kmul/kdiv

The chip area requirements for signed operators are showgiri4. For the case of
krmul s there appears a trade-off between the number of LUT andteegéesources since
the combinational version requires a 28.1% increase in Lahtka 33.2% decrease in reg-
isters (average). The corresponding trade-ofkfr vs is 41.2% and 16.6%, respectively.
In general, the extreme cases of resource consumption fgpemnstants 57kdiv) and
43 (kmul).

8 Performance evaluation against Vivado HL S

Table 6 provides information on the performance of Hercukg&inst Vivado HLS
2013.2 on Virtex-6 and Kintex-7 (XC7K70TFBG676-2 FPGA dm)i Better results
(lower execution time; smaller area) have been typeset lid. bdercuLeS outperforms
Vivado HLS in key benchmarks such as filtering and numericat@ssing. As expected

Source and IR-level optimizations in the HercuLeS higkteynthesis tool 19

Table6 Out-of-the-box comparison of HercuLeS against Vivado HLS 2D13.

Benchmark Vivado HLS HercuLeS Family
LUTs | Regs| Time (ns) | LUTs | Regs | Time (ns)
Bit reversal 67 39 72.0 42 40 11.6 | Virtex-6
Radix-2 division 218 226 63.6 318 332 30.6 | Kintex-7
Edge detection 246 130 1636.3 680 361 1606.4 | Virtex-6
Fibonacci series 138 131 60.2 137 197 102.7 | Virtex-6
FIR filter 89 114 1027.1 606 540 393.8 | Kintex-7
Greatest common divisor 210 98 35.2 128 93 75.9 | Virtex-6
Cubic root approx. 239 207 260.6 365 201 400.5 | Virtex-6
Prime sieve 525 595 6108.4 565 523 3869.5 | Virtex-6

in many occasions, better speed/performance can be tcdtiEn-lower area.

9 Conclusion

HerculLeS delivers a contemporary HLS environment that eacolnfortably used for
algorithm acceleration by software-oriented engineensthis manuscript, automatic IP
integration and the transformational framework used incHeeS have been presented in
detail. Transformations are envisioned as standaloneepabat do not affect the inner
workings of other aspects of the compiler. Both control- dath-oriented optimizations
were investigated focusing on loop optimization, if-carsien and arithmetic transforma-
tions. Loop optimizations provide 71% improvement in cypégformance, while in an-
other scenario, if-conversion offers an average improvero£6.5%. Further, operations-
by-constant can be implemented with an amortized cost oajeles.

References and Notes

1 C-to-Silicon. http://www.cadence.com/products/sd/silicon_compiler/. destssed: Sep. 24,
2014.

C-to-Verilog. http://www.c-to-verilog.com. Last accessed: Sep. 2442

CatapultC. http://calypto.com/en/products/catapult/overview/. Last acteSsp. 24, 2014.

R. Nane, V. M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. BierteDWARV 2.0: A
CoSy-based C-to-VHDL hardware compiler.Bnoc. Int. Conf. on Field Programmable Logic
and Applicationspp. 619—622, Oslo, Norway, Aug. 2012.

5 CoSy. http://lwww.ace.nl/compiler/cosy.html. Last accessed: Sep024, 2

6 GAUT. http://lwww-labsticc.univ-ubs.friwww-gaut/. Last accessed.24, 2014.

he

8

ArWN

GHDL. http://ghdl.free.fr. Last accessed: Sep. 24, 2014.
GIMPLE. http://gcc.gnu.org/wiki/GIMPLE. Last accessed: Sep. 24420

9 Graphviz. http://www.graphviz.org. Last accessed: Sep. 29, 2014.

10 ImpulseC. http://www.impulseaccelerated.com. Last accessed: S04,

11 ITRS. http://www.itrs.net/reports.html. Last accessed: Sep. 24, 2014.

12 LegUp. http://llegup.eecg.utoronto.ca/. Last accessed: Sep. 24, 201

13 A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. CzajkowSkiD. Brown, J. H. An-
derson. LegUp: An Open Source High-Level Synthesis Tool for &Based Processor/Ac-
celerator SystemsaACM Trans. on Embedded Computing Systetif?):1-27, Sep. 2013.

14 LLVM. http://llvm.org. Last accessed: Sep. 24, 2014.

15 Modelsim. http://www.mentor.com/products/fpga/model/. Last accessul: 24, 2014.

16 ROCCC. http:/iwww.jacquardcomputing.com/roccc/. Last accessgu:28e2014.

17 SPARK. http://mesl.ucsd.edu/spark/. Last accessed: Sep. 24, 2014.

18 S. Gupta, R. Gupta, N. D. Dutt, and A. NicolalBPARK: A Parallelizing Approach to the
High-Level Synthesis of Digital CircuitSpringer, 2004.

23
24

26

27
28

29

30

31

32

33

35

36

37

39

40

41

42
43

45

46
47
48

49

N. Kavvadias et al.

Synphony HLS. http://www.synopsys.com/Systems/BlockDesign/HLSét aecessed: Sep.
24,2014.

The GNU Compiler Collection homepage. http:/gcc.gnu.org. Last aedeSep. 24, 2014.
TransC. http://cgi.tu-harburg.de/ti6hm/. Last accessed: Sep. 24, 20

H. Manteuffel, C. S. Bassoy, and F. Mayer-Lindenberg. The §€aprocess model and inter-
process communication. Iroc. Int. Conf. on Field-Programmable Technology (FPT 2010)
pp. 87-93, Tsinghua University, Beijing, China, USA, Dec. 2010.

Xilinx. http://www.xilinx.com. Last accessed: Sep. 24, 2014.

IEEE. 1364-2005 Standard for Verilog Hardware Description Languager. 2006.

IEEE. 1076-2008 Standard VHDL Language Reference Manlaad. 2009.

A. W. Appel. SSA is functional programmingACM SIGPLAN Notices33(4):17-20, Apr.
1998.

P. P. ChuRTL Hardware Design Using VHDLWiley, 2006.

P. Coussy and A. Morawiec, editoidigh-Level Synthesis: From Algorithm to Digital Circuits
Springer, 2008.

D. D. Gajski and L. Ramachandran. Introduction to high-level syigh&SEE Design & Test
of Computers11(1):44-54, Jan.-Mar. 1994.

G. N. T. Huong and S. W. Kim. GCC2Verilog: Compiler toolset for compted@slation of C
programming language into Verilog HDIETRI Journa) 33(5):731-740, Oct. 2011.

N. Kavvadias and K. Masselos. NAC: A lightweight intermediate repttasiem for ASIP com-
pilers. InProc. Int. Conf. on Engineering of Reconfigurable Systems and ifigts (ERSA'11)
pp. 351-354, Las Vegas, Nevada, USA, Jul. 2011.

Xilinx. Vivado ESL Design. http://lwww.xilinx.com/products/design-
tools/vivado/integration/esl-design/index.htm. Last accessed: Sep024.

Ajax Compilers. HercuLeS HLS. http://www.ajaxcompilers.com/techndlugygules-high-
level-synthesis. Last accessed: Sep. 24, 2014.

J. R. Cordy. TXL programming language. http://www.txl.ca. Last asegsSep. 24, 2014.

D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler Transfornsafar High-Performance
Computing.ACM Computing Survey26(4):345—-420, Dec. 1994.

R. Bernstein. Multiplication by integer constan8oftware: Practice and Experienceol. 16,
no. 7, pp. 641-652, Jul. 1986.

P. Briggs and T. Harvey. Multiplication by integer constants. Rice UnechTreport, Jul. 1994.
H. S. WarrenHacker’s Delight 2nd edition. Addison-Wesley, Oct. 2012.

N. Méller and T. Granlund. Improved division by invariant integ¢éEEE Trans. on Computers
60(2):165-175, Feb. 2011.

N. Kavvadias and K. Masselos Hardware design space exploratiog H&rcuLeS HLS.
In 17th Panhellenic Conference on Informatics with international participatigm 195-202,
Thessaloniki, Greece, Sep. 2013.

J. L. Hennessy and D. A. Pattersddomputer Architecture - A Quantitative Approach (4. ed.)
Morgan Kaufmann, 2007.

L.-N. Pouchet. PolyBench. http://sourceforge.net/projects/polyliench

J. R. Cordy. The TXL Source Transformation Languagesdience of Computer Programming
vol. 61, no. 3, pp. 190-210, Aug. 2006.

J. R. Cordy. Excerpts from the TXL cookbook.®enerative and Transformational Techniques
in Software Engineering lJlpp. 27-91, Braga, Portugal, Jul. 2009.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversfarontrol dependence to
data dependence. Rroc. 10th ACM SIGPLAN Symp. on Principles of programming langsjage
1983, pp. 177-189.

Aeroflex Gaisler. http://www.gaisler.com.

VEX homepage. http://www.hpl.hp.com/downloads/vex/.

J. A. Fisher, P. Faraboschi, and C. Youlgmbedded Computing : A VLIW Approach to Archi-
tecture, Compilers and Tool$1organ Kaufmann, Dec. 2004. http://www.vliw.org/book/.

J. Arndt. Matters Computational: Ideas, Algorithms, Source Codenline version:
http://lwww.jjj.de/fxt/fxtbook.pdf, Aug. 2011.

