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Abstract: HercuLeS is an extensible high-level synthesis environment for au-
tomatically mapping algorithms to hardware. It overcomes limitations of known
work: insufficient representations, maintenance difficulties, necessityof code
templates, lack of usage paradigms and vendor-dependence. Aspects that are
highlighted include automatic IP integration and especially source- and interme-
diate-level optimizing transformations.

In this context, we present transformational patterns for loop and if-conversion
optimizations. Further, we focus on constant multiplication and division by
proposing a suitable scheme for their straightforward and decoupled utilization
in user applications. It is shown that loop optimizations provide benefits of up
to 32% in cycle performance, while if-conversion delivers an averageimprove-
ment of 6.5%. By applying arithmetic optimizations, a 3.3-5.9× speedup over
sequential implementations is achieved. It is also shown that HercuLeS is highly
competitive to state-of-the-art commercial tools.
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1 Introduction

It has long been observed that human designers’ productivity does not escalate suffi-
ciently enough to match the corresponding increase in chip complexity. Notably, the annual
increase of chip complexity is 58%, while human designers’ productivity increase is lim-
ited to 21% [11]. A dramatic increase in designer productivity is only possible through
the adoption and practicing of methodologies that raise thespecification abstraction level,
ingeniously hiding low-level, time-consuming, error-prone details. New EDA (Electronic
Design Automation) methodologies aim in generating high-performance digital designs
from high-level descriptions, a process called High-LevelSynthesis (HLS) [29]. HLS [28]
aims at eliminating human errors and shortening time-to-market. The input to this pro-
cess is usually an algorithmic-level description, generating synthesizable register-transfer
level (RTL) designs that can be implemented on ASICs (Application-Specific Integrated
Circuits) or FPGAs (Field-Programmable Gate Arrays).

HLS approaches have been developed by academic groups, startups, established FPGA
and EDA vendors. Still, there is need to tackle important shortcomings, inefficiencies and
omissions such as: a) the devise and use of insufficient and inflexible intermediate repre-
sentations (IRs); b) difficulty in maintaining features andinterfacing optimizations; c) man-
dating the use of code templates to obtain decent results; lack of easy to follow paradigms;
d) use of closed formats and e) succumbing to vendor and technology dependence.

In this work, the HercuLeS approach [40] taken to efficientlysolve all these longstand-
ing problems is presented. In contrast to the vast majority of competitive technologies,
HercuLeS confronts all of the aforementioned problems: a) it uses the NAC IR [31] which
is an exportable and extensible bit-accurate typed-assembly language for whole program
descriptions; b) optimizations can be added as self-contained external modules upon a
moderately-sized HLS kernel; c) HercuLeS does not rely on code templates since it uses
a graph-based backend; d) open specifications such as Graphviz [9] and NAC are used
throughout the HLS process, and e) the generated HDL code is completely vendor- and
technology-independent. HercuLeS-generated code does not rely on vendor-specific fea-
tures such as the presence of patented architectural features; embedded memory and com-
putational blocks that would enforce vendor tie-in. It is human-readable and allows for
automatic third-party IP integration through a truly open process.

The remainder of this paper is organized as follows. Section2 overviews previous
research on the subject. Our motivations and contributionsbehind this work are established
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in Section 3. In Section 4, interesting aspects of HercuLeS are introduced. Sections 5 and
6 discuss C- and NAC-level transformation paradigms and their implementation. Section 7
provides performance metrics that illustrate their effectiveness despite being disjointed
from the main compilation flow, while Section 8 compares HercuLeS against Vivado HLS
[32] which is a popular flow for FPGA HLS. Finally, Section 9 summarizes the paper.

2 Related work

HLS offerings from EDA vendors include Vivado HLS [32], CatapultC [3], ImpulseC
[10], Synphony HLS [19] and C-to-Silicon [1]. Vivado HLS accepts source input in C, C++
or SystemC and generates RTL hardware in VHDL [25] or VerilogHDL [24]. However,
third-party IPs are not automatically integrated and vendor-dependent cores are used. Gen-
erally, architectures generated by CatapultC and ImpulseChave increased communication
overhead that cannot be alleviated in all cases. Synphony HLS and C-to-Silicon primarily
target the ASIC community due to their very high price tags; evaluation versions for them
are not available to the public. None of these tools expose information using open spec-
ifications; textual IRs are not accessible for processing and manipulation by third-party
tools.

Some HLS tools target specific platforms, for instance user designs are utilized as
PICO/ARM coprocessors in [30]. Despite the convenience of GCC [20] is identified
in [30], the actual input to the HLS engine is the low-level, machine-dependent RTL IR.
LegUp [12, 13] provides a rich environment for experimentation but produces low-level,
vendor-specific HDL code. DWARV [4] is a hardware compiler with a CoSy-based fron-
tend [5] that can generate a reconfigurable processor-basedimplementation.

Publicly released tools producing generic HDL include ROCCC [16], SPARK [17,18]
and GAUT [6]. ROCCC [16] targets streaming C applications ona feed-forward pipeline.
It is restricted to perfectly nested constant-bound loops.GAUT [6] accepts a C/C++ subset
and user constraints (total latency, maximum clock period)to extract full parallelism. It
is incapable of handling non-static loops. SPARK only handles loops with fixed constant
iteration counts, rendering most designs unfeasible.

Tools with web interface access or recent demo versions include: C-to-Verilog [2],
TransC [21,22] and HercuLeS. C-to-Verilog [2] is an LLVM [14] Verilog backend present-
ing limitations in accessing local or global arrays within functions. TransC [21] supports
streaming constructs for data exchange and process synchronization, however through non-
standard C-like code requiring the user to significantly divert from C programming.

2.1 Summary and comparison of HLS systems

To establish a comparative summary of state-of-the-art HLS, we attempt to quantify
multiple performance evaluation criteria:

• Abstraction: abstraction level supported for the source language.
• Types: richness and range of accepted data types.
• Explore: rapid design space exploration capabilities.
• Verify: verification aspects such as automatic generation ofself-checking testbenches,

assertion insertion, code coverage.
• Results: quality of results in terms of speed, area and power.
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Figure 1 HLS tools comparison (Abstraction;Types;Explore;Verify; Results;Documentation;
Learning).

• Documentation: available tutorial, user-oriented and developer-oriented materials.
• Learning: estimated learning curve.

Fig. 1 uses Kiviat graphs to visualize the comparative analysis of the tools across mul-
tiple independent dimensions. Certain tools have been omitted due to lack of sufficient
information for the evaluation process, source language frontend issues or for not generat-
ing correct RTL code.

HercuLeS achieves close results (wins and losses) to VivadoHLS, which is known to
compare well with the best-known open-source HLS tool, LegUp. Mentor CatapultC and
SynphonyC are also considered strong offerings. ROCCC is a mature tool with version 1.0
based on the SUIF compiler infrastructure and 2.0 on LLVM butpresents a steep learning
curve. GAUT and SPARK fall behind, mainly due to lower ANSI C compatibility, and
their runtime instability. GAUT achieves exceptional performance for DSP code using
loop-level pipelining but does not perform well on control-oriented code.

3 Motivation and contribution

Commercial closed-source HLS tools as Vivado HLS [32] do notprovide for user in-
terfacing of source language frontends, custom analysis oroptimization passes, and target
architecture backends. At the same time, academic open-source HLS tools as LegUp [12]
offer a transparent approach to user involvement, however this is only practical through
the use of their established data structures and API (Application Programming Interface).
No additional interaction points are established for exporting and importing to and from
third-party tools, either open-source or not, such as external code analyzers, optimizers,
annotators and hardware IP integrators.

In contrast to competitor tools, HercuLeS [33] is the only high-level synthesis environ-
ment that allows seamless interfacing of user tools to the source, NAC, Graphviz CDFG
and HDL (VHDL) levels. This even allows for competitor toolsto utilize HercuLeS as a
means for pre-optimizing source code or post-optimizing the generated HDL to improve
their results.

As an example, consider the segment:int divby60(int x){return x/60;}
for performing an integer/truncating division by 60. Typical HLS tools have the following
approaches in dealing with this segment:
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✞ ☎
int divby60(int x) {

int q, M=-2004318071, c;
long long int t, u, v;
t = (long long int)M * (long long int)x;
q = t >> 32;
q = q + x;
q = q >> 5;
c = x >> 31;
q = q + c;
return (q);

}
✝ ✆

Figure 2 C code for truncating division by 60, optimized bykdiv.

Table 1 Using HercuLeS’ optimized constant division in Vivado HLS.

Metric Vivado Vivado % improvement
HLS (unopt.) HLS (opt.)

LUTs 147 78 46.9
FFs 123 81 34.1
DSP blocks 4 4 0.0
SRL shifters 9 0 100.0
Propagation time (ns) 3.169 2.927 7.6
Number of cycles 8 8 0.0

• perform the division in floating-point arithmetic which is extremely costly
• use a variable divider which again is an overkill, both area-and timing-wise (32-33

cycles are required for a typical radix-2 divider). This is what LegUp does in addi-
tion to generating non-portable, vendor-specific code (using Altera-specific memory
components)

• use a suboptimal algorithm to perform the constant division(Vivado HLS)
• are unable to process the request.

On the contrary, HercuLeS allows the interfacing ofkdiva, an optimizer for constant
division generating either C or NAC code. This way, an optimized circuit using only integer
arithmetic with a double word-size multiplication is used [38]. The optimized C code is
shown in Fig. 2.

Timing (minimum propagation delay) and area metrics have been obtained using the
2013.2 Vivado Design Suite for the XC7K325T-FFG900 device (-2 speed grade). As can
be seen in Table 1, Vivado HLS underperforms if using its own algorithms, while benefits
significantly from using thekdiv-based optimizer of HercuLeS.

In this paper we argue that transformational frameworks canbe used at multiple levels
of the HLS process. Further, we investigate syntactical extensions for developing self-
contained optimizations that can be plugged-in to any hardware compiler that exposes
a textual IR. These grammatical overrides are applied to thesource or IR grammar and
impose source/IR transformation rules [43]. Their suitability is manifested by four distinct
optimization cases: a) source-level loop optimizations, b) late if-conversion [45], c) single
constant multiplication [36, 37] and d) single constant division by providing a strongly-
typed variant of [38].

ahttp://sourceforge.net/projects/kdiv/



6 N. Kavvadias et al.

Figure 3 The HercuLeS flow.

4 HercuLeS basics

HercuLeS automatically generates customized hardware as extended FSMDs (Finite-
State Machines with Datapath) [29] in VHDL. Essentially, HercuLeS translates programs
in the NAC IR to a collection of Graphviz CDFGs (Control-DataFlow Graphs) which are
then synthesized to vendor-independent self-contained RTL VHDL. HercuLeS is also used
for push-button synthesis of ANSI C code to VHDL.

4.1 Overview

The basic steps in the HercuLeS flow are shown in Fig. 3. C code is passed to GCC
for GIMPLE dump generation [8], following an external source-level optimizer. Textual
GIMPLE is then processed bygimple2nac; alternatively the user should directly supply a
NAC translation unit (TU) [31] or use an owned frontend.

NAC operations specify a mapping from a set ofn ordered inputs tom ordered out-
puts as follows:o1, ..., om <= oper i1, ..., in; where: oper specifies
the IR-level instruction,o1, ..., om are them outputs, andi1, ..., in then in-
puts of the operation. A declared object is either aglobalvar (a global scalar or array
variable),localvar (a local),in or out (input or output procedure argument). The
memory access model defines dedicated address spaces per array so that both loads and
stores require an explicit array identifier. An indexed loadin C (b = a[i];) is trans-
lated as:b <= load a, i;, while an indexed store (a[i] = b;) as:a <= store
b, i;. Procedures are non-atomic operations;(y) <= sqrt(x); computes⌊√x⌋.

Various optimizations can be applied at the NAC level; peephole transformations, if-
conversion, and function call insertion to enable IP integration. Heuristic basic block
partitioning avoids the introduction of excessive critical paths due to operation chaining.
The core of HercuLeS comprises of a frontend (nac2cdfg) and a graph-based backend
(cdfg2hdl). nac2cdfgis a translator from NAC to flat CDFGs represented in Graphviz[9].
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Table 2 FSMD I/O interface.

Signal Direction Description
clk I signal from external clocking source
reset I asynchronous (or synchronous) reset
start I enable computation
din I data inputs (generally, multiple)
dout O data outputs (generally, multiple)
ready O the block is ready to accept new input
valid O asserted when a certain data output port is streamed-

out from the block (generally it is a vector)
done O end of computation for the block

cdfg2hdlis the actual synthesis kernel for automatic FSMD hardware from Graphviz CD-
FGs to VHDL and self-checking testbench generation.

nac2cdfgis used for parsing, analysis and CDFG extraction from NAC programs.
Multiple approaches to global or local static single assignment (SSA) form construction
are supported [26, 31]. Data flow analysis uses on-demand graph reachability checking.
cdfg2hdlmaps CDFGs to an extended FSMD MoC (Model of Computation) [29]. For
scheduling operations to specific states, sequential, control-aware ASAP or ALAP schedul-
ing can be used. ASAP and ALAP can be combined with fast operation chaining for better
state workload balancing.

An ANSI C backend allows for rapid algorithm prototyping andNAC verification.
VHDL code can be simulated with GHDL [7] and Modelsim [15] andsynthesized in Xilinx
XST and Vivado Design Suite [23] using automatically generated scripts.

4.2 Extended FSMDs

The FSMDs of our approach use fully-synchronous conventions and register all their
outputs [27]. The generated FSMDs are generalized FSMs introducing embedded actions,
with: a) support of array input, output and streaming I/O ports, b) communication with
embedded block and distributed LUT memories, c) latency-insensitive local interface be-
tween caller and callee FSMDs, and d) interfacing to external IP blocks. I/O port usage is
summarized in Table 2.

The FSMDs usen+ 2 states, wheren is the number of required computational states.
The two overhead states represent CDFG source/sink nodes. One possible optimization is
to merge the sink state with its immediate predecessors.

4.3 Hierarchical FSMDs

A two-state protocol describes proper communication between caller and callee FS-
MDs. The first state prepares the communication, while the second is an “evaluation”
superstate where the entire computation applied by the callee FSMD is effectively hidden.

The caller FSMD performs computations where new values are assigned to⋆_next
signals and registered values are read from⋆_reg signals. To avoid the problem of mul-
tiple signal drivers, callee procedure instances produce⋆_eval data outputs that can then
be connected to register inputs by hardwiring to the⋆_next signal. Fig. 4 illustrates the
established interface and state transitions that control acall ((m) <= isqrt(x);) to
integer square root evaluation.

STATE_1 sets up the callee instance. Callee operation takes place inSUPERSTATE_-
2. When the callee terminates,ready is raised. Since calleestart is kept low, output
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(a) Interface. (b) State transitions.
Figure 4 Caller-callee communication.

(a) load mechanism. (b) store mechanism.

Figure 5 Communication with on-chip memories.

data can be transferred to them register via itsm_next input port. Control then is handed
over toSTATE_3. The callee instance follows the established FSMD interface, reading
x_reg and producing its result inm_eval.

4.4 Communication with embedded memories

In NAC, theload andstore primitives are used for describing read and write mem-
ory access. We will assume a RAM model with write enable, and separate data input (din)
and output (dout) sharing a common address port (rwaddr). To control access to such
block, a set of four non-trivial signals is needed: a write enable signal (mem_we), and the
corresponding signals for addressing, data input and output.

Fig. 5 depicts the implementation of memory access operations. Synchronousload
requires the introduction of awaitstate register. This register assists in devising a dual-
cycle sub-state for performing the load. During the first cycle of STATE_1 the memory
block is addressed. In the second cycle, the requested data are made available through
mem_dout and are assigned to registermysig. This data can be read frommysig_reg
duringSTATE_2. store raisesmem_we in a given single-cycle state so that data are
stored in memory and made available in the subsequent state/machine cycle.
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Figure 6 Automatic IP integration in HercuLeS.

4.5 IP integration

HercuLeS allows for automatic IP integration given that theuser supplies built-in func-
tionalities. To illustrate this approach, IP blocks for signed/unsigned addition/subtraction,
multiplication, division and remainder have been designed. The HercuLeS flow user is
able to import and use an owned IP by the following process:

1. Implement IP with expected interface and place in proper subdirectory.
2. Add corresponding entry in a textual database.
3. Use TXL transformations [34] for replacing an operator use by a black-box function

call via a script.
4. A list of black box functions is generated.
5. HercuLeS automatically creates a hierarchical FSMD withthe requested callee(s).
Fig. 6 illustrates the combined TXL/C approach. The first twosteps apply preprocess-

ing for splittinglocalvar declarations and removing those that are redundant or unused.
Then, they are localized and subsequently procedure calls to black-box functions are in-
troduced. These routines are the actual built-in functions. If the corresponding built-ins
are listed in the IP database, an interface-compatible VHDLimplementation to HercuLeS
caller FSMDs is assumed. Then,cdfg2hdlautomatically handles interface generation and
component instantiation in the HDL description for the caller FSMD description. In addi-
tion, simulation and synthesis scripts already account forthe IP HDL files.

This approach is also valid for floating-point computation,while both pipelined and
multi-cycle third-party components are supported.

5 Source level transformations

A crucial characteristic of HercuLeS against rival tools isthe capability of adding ex-
ternal modules operating at the C source, NAC IR, and Graphviz CDFG levels. Key to
this scheme is the exposure of self-contained textual representations at the appropriate lev-
els of abstraction. This is advantageous since it allows to maintain a stable kernel while
experimenting with transformations for code restructuring, optimization, and automatic IP
integration.

Since NAC is a rather low-level representation for applyingloop-oriented or other high-
level transformations, a collection of autonomous C-to-C code transformation passes has
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Table 3 Supported loop transformations.

Transformation Description Params
bump Alter loop boundaries by an offset offset, step
extension Extend loop boundaries lo, hi
reduction Reverse the effect of extension –
reversal Reverse iteration direction –
normalization Convert arbitrary to well-behaved loops –
fusion Merges bodies of successive loops –
coalescing Nested loops into single loop –
unswitching Move invariant control code –
strip mining Single loop tiling tilesize
partial unrolling Partially unroll a loop by a factor uf
full unrolling Fully unroll a loop –

Figure 7 Flow of TXL transformations for C code optimization.

been developed in TXL [34]. TXL provides the means for developing syntactical exten-
sions and rule-based transformations without the need to expose internally built, matched
and substituted ASTs to the user. Further, TXL allows for agile parsing, meaning that
internal variants of a grammar can be exploited to simplify analyses and optimizations.

This high-level optimizer supports generic restructuringtransformations (GRTs) and
loop-specific optimizations (LSOs). GRTs include code canonicalization for removing pro-
gramming idioms, arithmetic optimizations, syntactic conversions among iteration sche-
mes, and statement local vectorization. Loop-specific optimizations [35] are summarized
in Table 3.

Fig. 7 illustrates a possible optimization flow using TXL passes. Certain decisions
in this flow regard the ordering of transformations, since e.g. loop coalescing prerequi-
sites loop normalization. It should be noted that strip mining eliminates chances for loop
unrolling, and should not be applied unconditionally to static loops. Further, it is not mean-
ingful to use both partial and full loop unrolling. User decisions also involve the proper
selection of tile size, vector size and unroll factor values.

Fig. 8 illustrates the TXL transformation for strip mining [41]. This rule is provably
safe and can be applied in all occasions. Strip mining is applicable when the length of
vector-like processing (VL: Vector Length) is unknown at compile time, and is possibly
larger than the hardware parallelism expressed as TS (Tile Size). TS is usually defined as
the maximum vector length (MVL) of the underlying microarchitecture. It allows generat-
ing code such that each vector operation is performed for a size that is less than or equal to
MVL. The TXL transformation creates a single strip-mined loop that is parameterized to
handle first a portion smaller than TS and for all remaining iterations, portions of the loop
equal to TS, until VL is consumed.
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✞ ☎
rule replaceStripMiningLT TS [number]

replace $ [repeat decl_or_stmt]
’for (Expr1 [expr]; Expr2 [expr]; Expr3 [expr])

{ Stmts [decl_or_stmt*] }
MoreStmts [decl_or_stmt]
deconstruct * [expr] Expr1

Ix [id] = Expr4 [primary]
deconstruct * [expr] Expr2

Ix2 [id] < Expr5 [primary]
deconstruct * [expr] Expr3

Ix3 [id] = Ix4 [id] + Expr6 [primary]
construct NewIx [id] Ix [_ ’sm] [!]
construct VL [id] Ix [_ ’vl] [!]
construct Low [id] Ix [_ ’low] [!]
% Allow only for the innermost loop to be converted
deconstruct not Stmts _ [for_stmt]
where Ix [= Ix2] where Ix [= Ix3] where Ix3 [= Ix4]
by

’int Low ’; Low = Expr4; ’int VL;
% Find the odd-sized piece.
VL = (Expr5-Expr4) % TS;
’int NewIx;
% Outer loop.
’for (NewIx=-1; NewIx<(Expr5-Expr4)/TS; NewIx=NewIx+1)

% Runs for length VL.
{ ’for (Ix=Low; Ix<Low+VL; Ix=Ix+Expr6)

% Main operation(s).
{ Stmts }

% Start of next vector.
Low = Low + VL;
% Reset the length to max/tilesize.
VL = TS; }

MoreStmts
end rule
✝ ✆

Figure 8 TXL transformation rule for strip mining.

5.1 Example

As a running example to applying syntactical loop transformations according to the
proposed flow in Fig. 7, the general matrix multiplication kernel is used (gemm.c), which
is part of PolyBench [42]. The effect of alternative configurations regarding the sequence
and selection of loop transformations is shown in Fig. 9.

6 NAC level transformations

In this section, we present self-contained optimizations for the NAC grammar. The
TXL grammar for NAC uses different tokens for target (id) and source operands (ident).
Further, TXL assists in developing syntactic extensions ofNAC. The corresponding NAC
dialects are then used in intermediate stages of these transformations since TXL rules that
convert patterns to replacements starting from the original pattern are unfeasible. TXL
coding enforces certain transformation paradigms such as declaration localization, global-
ization and statement vectorization [44] and scalarization as stepping stones for developing
custom transformations.



12 N. Kavvadias et al.
✞ ☎
for (i = 0; i < NI; i++) {

for (j = 0; j < NJ; j++) {
C[i][j] *= beta;
for (k = 0; k < NK; k++) {

C[i][j] += alpha * A[i][k] * B[k][j];
}}}

✝ ✆

(a) Initial code.
✞ ☎
#define MIN(x, y) ((x) < (y) ? (x) : (y))
int i_coal4sm1;
for (i_coal4sm1=0; i_coal4sm1<4096; i_coal4sm1=i_coal4sm1+8) {

for (i_coal4=i_coal4sm1; i_coal4<MIN(4096,i_coal4sm1+8); i_coal4=i_coal4+1) {
i = i_coal4 / 64, j = i_coal4 % 64;
C[i][j] *= beta;

#define MIN(x, y) ((x) < (y) ? (x) : (y))
int k_sm1;
for (k_sm1=0; k_sm1<64; k_sm1=k_sm1+8) {

for (k=k_sm1; k<MIN(64,k_sm1+8); k = k + 1) {
C[i][j] += alpha * A[i][k] * B[k][j];

}}}}
✝ ✆

(b) Following loop normalization, coalescing and strip mining.
✞ ☎
int i_coal4;
for (i_coal4=0; i_coal4<4096; i_coal4=i_coal4 + 1) {

i = i_coal4 / 64, j = i_coal4 % 64;
C[i][j] *= beta;
{

C[i][j] += alpha * A[i][0] * B[0][j];
C[i][j] += alpha * A[i][1] * B[1][j];
...
C[i][j] += alpha * A[i][63] * B[63][j];

}}
✝ ✆

(c) Following loop coalescing and full unrolling.
✞ ☎
int i_coal4;
for (i_coal4=0; i_coal4<4096; i_coal4=i_coal4+1) {

i = i_coal4 / 64, j = i_coal4 % 64;
C[i][j] *= beta;
for (k = 0; k < 63;) {

C[i][j] += alpha * A[i][k] * B[k][j];
k = k + 1;
C[i][j] += alpha * A[i][k] * B[k][j];
k = k + 1;}

for (; k < 64; k = k + 1) {
C[i][j] += alpha * A[i][k] * B[k][j];}}

✝ ✆

(d) Following loop coalescing and partial unrolling.
Figure 9 gemm.c exposed to different configurations of the loop transformation flow.

6.1 If conversion

If-conversion reduces control- to data-dependence [45]. NAC provides themuxzz
quaternary multiplexing operation that implements a conditional move resolving both con-
ditions of the predicate.

Fig. 10 illustrates the flow of the corresponding TXL transformation applied to SSA
NAC. First, control-flow regions amenable to dependence conversion are identified. Two
new variable declarations are needed for keeping the transfer operands of the newmuxzz
operation. At this point, these declarations use dummy datatypes. Then, intermediate
variable declarations are moved to their declaration sites. Since SSA form is used, these
declarations always immediately precede their definition and can be easily matched. The
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Figure 10 Flow of TXL transformations for if-conversion.

Figure 11 Flow of TXL transformations for constant multiplication/division.

following step fixes the transfer operand declarations to the type of their target operand.
Then, local variable declarations are finally moved to the earliest site in the current scope
in order to be compatible with the NAC grammar.

6.2 Constant multiplication

Multiplication by an integer constant (kmul) allows for significant speed improvement
and area reduction since a variable multiplier needs not be used. Contemporary FPGAs
offer high-speed embedded multipliers, however it is always relevant to microprocessors
without full-range hardware multipliers.

TXL is unsuitable for extensive numerical computation, thus the actual NAC code gen-
erator for the constant multiplication is written in C. Fig.11 illustrates the combined TXL
and ANSI C approach. The first two steps apply preprocessing for splittinglocalvar
declarations and removing those that are redundant or unused. Then, they are localized
and subsequently procedure calls to specialized constant multiplication routines are intro-
duced. These routines are then generated by the C tool and concatenated to the NAC IR of
the application. The optimized routines can be inlined at their call site to eliminate argu-
ment passing overheads. Constant division optimization isapplied by using the exact same
process.

6.3 Constant division

A workaround for constant division (kdiv) in current processors uses a multiplication
with the multiplicative inverse (or ‘magic’ number) of the constant followed by a number
of adjustment steps [38,39].

Integer division instructions are either omitted from modern microarchitectures or tend
to be a speed limiting factor. While the Intel E6xx series employs a radix-16 divider,
there is no easy way to incorporate a high-performance divider in FPGA implementations
of soft-core processors. Nios-II and Microblaze incorporate multi-cycle radix-2 dividers;
LEON3 [46] uses a division step primitive to achieve similarperformance. For a generic
division routine, typicallyclN +offset cycles are spend for the calculation, withcl being
the cycle count for the inner loop,N the number of calculation stages (W/log2(k) for k-
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CONST-DIV-SIGNED
begin

declare localvar sW q, M, c;
declare localvar s2W t, u, v;
LAB_1:
// S1. Load magic constant.
M <= ldc m;
// S2. Perform signed high multiplication.
t <= mul M, n;
u <= shr t, W;
q <= trunc u;
// S3. Add or subtract n from q and store in q.
if d > 0 andm < 0 then
q <= add q, n;

else if d < 0 andm > 0 then
q <= sub q, n;

endif
// S4. Quotient correction steps using dividend and divisor sign.
if s > 0 then
q <= shr q, s;

endif
c <= shr n, W − 1;
q <= add q, c;
if d < 0 then
c <= setne n, 0;
q <= add q, c;

endif
y <= mov q;

end

Figure 12 Pseudocode for the signed constant division generator.

radix division andW -bit word-lengths) andoffset denotes the sum of pre- and post-loop
overhead cycles.

We have modified the aforementionedkdiv algorithm for use with strongly-typed low-
level languages as shown in Fig. 12. Past implementations gratuitously allow for language-
and machine-specific behavior when interpreting certain cases for type casting and promo-
tion. In our case, specialized operations such as theshrxi extended shift immediate
operation in [38] are not needed. Our algorithm produces a quotient for the equivalent of
a high multiplication (umulhi in [39]) implemented by a 64-bitmul followed byshr.
Alternatively, NAC can be extended with a dedicated high multiplication.

The code generator accounts for the generic case of a constant divisor d. The magic
number is denoted bym, s is a correctional shift amount andW is the bitwidth of a machine
word. Input dividendn and quotienty both have a width ofW . Emitted NAC code
is shown in monospace font. First, the algorithm generates declarations forlocalvar
variables. Following this, it generates theldc andmul operations, theadd if d > 0 and
m < 0, or thesub if d < 0 andm > 0. Then, the extended immediate shift concatenating
the carry/borrow bit by the previous operation is generatedif s > 0. Additional quotient
correctional steps are generated by using a regular shift immediate and an increment.

7 Performance evaluation of the transformational schemes

To assess the performance of the proposed transformationalschemes, we demonstrate
the following:

1. Effect of loop-oriented transformations.
2. Effect of if-conversion on benchmark cycles.
3. Machine cycles for optimizedkmul/kdiv.
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Table 4 PolyBench applications with absolute cycle counts on VEX.

Benchmark Description Reference Full loop
unrolling

2mm two matrix-matrix multiplications 329566 65635
3mm three matrix-matrix multiplications 491558 92991
atax matrix transpose and vector multiplication 72729 10519
bicg subkernel of BiCGStab linear solver 51802 40122
doitgen reduction sum of a 3D×2D matrix 373942 158586
dynprog dynamic programming problem solver 65635 230644
gemm general matrix-matrix multiplication 1478041 155712
gesummv scalar, vector and matrix multiplication 43669 32477
mvt matrix-vector product and transpose 57048 97042
symm symmetric matrix-matrix multiplication 186558 209593
syr2k symmetric rank-2k update 1735512 4008928
syrk symmetric rank-k update 1452630 3992287
trmm triangular matrix-matrix multiplication 1368907 1392347

4. Estimated timing and area demands for hardware implementations of the latter.
For evaluating scenario 1, a cycle-accurate simulator for an experimental VLIW mi-

croarchitecture was used. For scenarios 2–3,gimple2nacwas used and machine cycles are
measured on a cycle-accurate compiled C model of the NAC virtual machine.

The timing (minimum propagation delay) and area requirements are estimated for the
40nm Virtex-6 6-input LUT FPGA process. The logic synthesis toolused is Xilinx Web-
pack ISE 12.3i. Throughout the evaluations, the XC6VLX75T device has been selected,
ranking among the smallest devices in the respective family. It should be noted thatkdiv
hardware uses a 32-bit multiply producing a 64-bit result, which nominally requires 4
DSP48E datapath blocks (3 if further optimized).

7.1 Effect of C-level transformations

In the first set of experiments, the loop transformation engine is evaluated over a pa-
rameterized VLIW architecture named VEX [47, 48]. The VEX toolchain provides the
means to target a wide class of embedded VLIW processors, by using a complete ANSI C
compilation toolset and a cycle-accurate simulator. VEX was configured as a single-cluster
VLIW machine featuring eight execution slots. The VEX scheduler attempts to schedule
the maximum available number of independent operations in parallel, performing a number
of loop-oriented optimizations.

Table 4 summarizes the PolyBench benchmarks [42] that have been used in this eval-
uation. It also provides the exact absolute cycles for VEX for the three distinct cases of
using reference and then optimized code by full loop unrolling. In order to obtain these
measurements, the same transformation script is applied toall applications.

Many applications have significant gains, even by followingthe strategy of uncondi-
tionally applying the loop transformation sequence. A closer look would unveil that some
applications are hampered by the generic form of strip mining, which increases the looping
overhead. Overall, a 32% improvement on geometric means is achieved.

7.2 Effect of if-conversion

To analyze the effect of the if-conversion transformation,a set of small integer/fixed-
point kernels has been selected:bitunzip/bitzip(data interleaving/(de)compression algo-
rithm [49]),cordic(multi-function fixed-point CORDIC),divider (sequential division algo-
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Table 5 Summary of NAC abstract machine cycles for the given benchmarks.

Bench. Cycles for each case
Seq Seq+ %diff ASAP ASAP+ %diff

ifconv ifconv
bitunzip 193536 191488 1.1 80896 79872 1.3
bitzip 197632 197632 0.0 96256 96256 0.0
cordic 667526 599892 10.1 421161 291561 30.8
divider 1375402 1375402 0.0 970651 970651 0.0
easter 4318 4200 2.7 4018 3600 10.4
eda 768 736 4.2 512 480 6.3
float2half 30208 28339 6.2 21208 19339 8.8
half2float 983042 917506 6.7 655362 589826 10.0
perfect 528268 527248 0.2 527758 526228 0.3
sieve 463058 463058 0.0 463047 463047 0.0

rithm),easter(Easter date calculations),eda(Euclidean distance approximation),float2half
andhalf2float (conversion to/from 16-bit floating-point format),perfect(perfect number
detection) andsieve(prime sieve of Eratosthenes).

Reported machine cycles have been collected in Table 5 assuming either a sequential or
a vectorized abstract machine model based on NAC. The lattercase is equivalent to ASAP
scheduling of scalar operations. For each benchmark, measured cycles with/without the
use of if-conversion are given in columns 2-3 and 5-6, respectively for the two models.
Columns 4 and 7 report the percentage difference between thevalues in the two preceding
columns. From these results, it can be deduced that if-conversion moderately improves
cycle performance: by 3.1% for sequential and 6.8% for ASAP scheduling. Some bench-
marks do not benefit at all since they do not incorporate a pattern that can be matched by
the respective TXL rules.cordic is the application with the most profound impact (10.1%
and 30.8% improvement, respectively).

7.3 Timing measurements for implementing kmul/kdiv

Fig. 13(a) illustrates the number of machine cycles for signed and unsignedkmul/k-
div among 32-bit quantities for all divisors up to 64. It can be seen that multiplication
(kmulu, kmuls) requires 2–8 cycles to complete, while division takes 2–9 cycles. It is
assumed that the multiplier and divider are separable IPs using registered outputs. In aver-
age,kmul operators require 16.8% and 25.4% less cycles than the respectivekdiv ones.
Still, the benefit from avoiding division is significant, depending on the specific profile of
a given application.

It should be noted that thekdiv cost is amortized to the maximum of 9 cycles irre-
spective to the specific constant. It compares favorably to the 32-33 cycles usually needed
for wordwise integer division. On the other hand,kmul requires an increasing number of
operations for certain larger constants.

The discussedkmul/kdivoperators have been implemented in RTL VHDL using Her-
cuLeS HLS. For spacing reasons, detailed results are only shown for signed arithmetic.
Fig. 13(b) and Fig. 13(c) depict the estimated propagation delay for differentkmul/kdivop-
erators for the same set of factors: {1:64}, respectively. We have investigated two possible
intra-unit schedules: a sequential with one NAC operation occurring per machine cycle and
chained ASAP schedule where the entire computation is collapsed into a single machine
cycle.

As expected, the estimated propagation delay is higher for the case of the chained
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Figure 13 Timing measurements forkmul/kdivunits on the XC6VLX75T Virtex-6 FPGA.

schedule by 40.1% and 19.9%, respectively for multiplication and division. Due to the use
of a combinational wide multiplier using 4 DSP48E blocks, division is slower by 5.7×
and 4.2× compared to multiplication. In the context of a custom architecture and not a
microprocessor, the chained version of the units may be preferred over the sequential one,
since it reduces the total computation time by a factor of 3.3× and 5.9×, respectively for
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Figure 14 Chip area in number of LUTs and registers for the constant multiplication/division
units on the XC6VLX75T Virtex-6 FPGA.

kmul/kdiv.

7.4 Area measurements for implementing kmul/kdiv

The chip area requirements for signed operators are shown inFig. 14. For the case of
kmuls there appears a trade-off between the number of LUT and register resources since
the combinational version requires a 28.1% increase in LUTsand a 33.2% decrease in reg-
isters (average). The corresponding trade-off forkdivs is 41.2% and 16.6%, respectively.
In general, the extreme cases of resource consumption appear for constants 57 (kdiv) and
43 (kmul).

8 Performance evaluation against Vivado HLS

Table 6 provides information on the performance of HercuLeSagainst Vivado HLS
2013.2 on Virtex-6 and Kintex-7 (XC7K70TFBG676-2 FPGA device). Better results
(lower execution time; smaller area) have been typeset in bold. HercuLeS outperforms
Vivado HLS in key benchmarks such as filtering and numerical processing. As expected
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Table 6 Out-of-the-box comparison of HercuLeS against Vivado HLS 2013.2.

Benchmark Vivado HLS HercuLeS Family
LUTs Regs Time (ns) LUTs Regs Time (ns)

Bit reversal 67 39 72.0 42 40 11.6 Virtex-6
Radix-2 division 218 226 63.6 318 332 30.6 Kintex-7
Edge detection 246 130 1636.3 680 361 1606.4 Virtex-6
Fibonacci series 138 131 60.2 137 197 102.7 Virtex-6
FIR filter 89 114 1027.1 606 540 393.8 Kintex-7
Greatest common divisor 210 98 35.2 128 93 75.9 Virtex-6
Cubic root approx. 239 207 260.6 365 201 400.5 Virtex-6
Prime sieve 525 595 6108.4 565 523 3869.5 Virtex-6

in many occasions, better speed/performance can be traded-off for lower area.

9 Conclusion

HercuLeS delivers a contemporary HLS environment that can be comfortably used for
algorithm acceleration by software-oriented engineers. In this manuscript, automatic IP
integration and the transformational framework used in HercuLeS have been presented in
detail. Transformations are envisioned as standalone passes that do not affect the inner
workings of other aspects of the compiler. Both control- anddata-oriented optimizations
were investigated focusing on loop optimization, if-conversion and arithmetic transforma-
tions. Loop optimizations provide 71% improvement in cycleperformance, while in an-
other scenario, if-conversion offers an average improvement of 6.5%. Further, operations-
by-constant can be implemented with an amortized cost of a few cycles.
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