
The HercuLeS HLS environment

Nikolaos Kavvadias
nkavvadias@ajaxcompilers.com

CEO, Ajax Compilers,
Athens, Greece

www.ajaxcompilers.com

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

The need for high-level synthesis (HLS)

Moore’s law anticipates an annual increase in chip
complexity by 58%
At the same time, human designer’s productivity increase is
limited to 21% per annum
This designer-productivity gap is a major problem in
achieving time-to-market of hardware products

Solution Adoption of a high-level design and synthesis methodology
imposing user entry from a raised level of abstraction

• Hide low-level, time-consuming, error-prone details
• Drastically reduce human effort
• End-to-end automation from concept to production

HLS An algorithmic description is automatically synthesized to a
customized digital embedded system

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Current status of HLS tools

The HLS tree bares fruits of all sorts; academic and
commercial

• Source releases, binary releases, web tools, vendor-dependent
tools, ‘‘unreleases’’ (unavailable for testing)

Commercial (CatapultC, ImpulseC, Cadence C-to-Silicon,
Synopsys Synphony, Xilinx Vivado HLS)

• ASIC-oriented tools priced within the 6-digit range
($100,000+)

• Xilinx Vivado HLS (formerly AutoESL) for FPGA
prototyping is priced at $4,800

Tools with free source/binaries (ROCCC, GAUT, SPARK,
PandA, LegUp)

• Unsupported in the long term; most of them abandoned after
funding ends/Ph.Ds get completed

Web access tools (C-to-Verilog, TransC)
• Generating incomplete designs, no testbench, limited C

support
Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Omissions, limitations and inefficiencies of current HLS
tools

The devise and use of non-standard, idiosyncratic languages
• HercuLeS connects to external frontends via a simple

interface. Apart from test frontends, work is underway for
GCC/GIMPLE and clang/LLVM support

Insufficient, opaque representations, recording only partial
information

• Uses a universal typed-assembly language, called NAC, as an
intermediate representation

Maintenance difficulties; code and API bloat as longevity
threats

• Optimizations added as self-contained external modules
Mandating the use of code templates

• HercuLeS does not rely on code templates since it uses a
graph-based backend

Succumbing to vendor and technology dependence
• The generated HDL is human-readable and vendor- and

technology-independent
Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

What’s in a name

HercuLeS: An extensible, high-level
synthesis (HLS) environment for

whole-program hardware compilation
with pluggable analyses and

optimizations

named after the homonymous constellation and not the mighty
but flawed demigod

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

The HercuLeS environment

HercuLeS is a new high-level synthesis tool marketed by
Ajax Compilers
Easy to use, extensible, high-level synthesis (HLS)
environment for whole-program hardware compilation
In development since 2009
HercuLeS targets both hardware and software
engineers/developers

• ASIC/SoC developers, FPGA-based/prototype/reference system
engineers

• Algorithm developers (custom HW algorithm
implementations)

• Application engineers (application acceleration)

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

The HercuLeS flow

Optimized C code passed to GCC for GIMPLE generation
gimple2nac translates to N-Address Code (NAC) IR
HercuLeS = nac2cdfg + cdfg2hdl

• nac2cdfg: SSA construction/CDFG extraction from NAC
• cdfg2hdl: automatic FSMD hardware and self-checking

testbench generation
Modular and extensible flow; support for the basic GMP
(multi-precision integer) API/DSL added in 24h (3 days)

• mpint.vhd: MP integer and SLV operators: 500 LOC, 12h
• gimple2nac extensions: 50 LOC, 4h
• HercuLeS additions: 150 LOC, 8h

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Features

Automatic RTL VHDL code and testbench generation
Automatic user-defined IP integration
C subset frontend
HercuLeS GUI
Parallel operation scheduling with chaining optimizations
Arithmetic optimizations, register optimization, C source
code optimizer incl. array flattening optimizations
VHDL-2008 floating-point and fixed-point arithmetic support
GNU multi-precision integer extensions
C verification backend
GHDL/Modelsim support
HercuLeS GUI

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

How it works

The user supplies NAC for a translation unit and reference test data
nac2cdfg: translator from NAC to flat CDFGs; generates C backend files
and VHDL packages for compound data types
Each source procedure is represented by a CDFG
cdfg2hdl: maps CDFGs (*.dot) to an extended FSMD MoC
All required scripts are automatically generated (GHDL/Modelsim
simulation, logic synthesis, backend C compilation)
Diagnostic simulation output; tracing of VHDL signals/C variables

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

NAC (N-Address Code)

NAC is a procedural intermediate language
• Extensible typed-assembly language similar in concept to

GCC’s GIMPLE and LLVM, but more generic and simple
• Arbitrary m-to-n mappings, virtual address space per array
• Statements: operations (atomic) and procedure calls

(non-atomic)
• Bit-accurate data types (integer, fixed-point,

single/double/custom floating-point arithmetic)
• Uses: RISC-like VM for static/dynamic analyses, CDFG

extraction, graph-based data flow analyses, input to HLS
kernels, software compilation

GCC GIMPLE: three-address code IR; actual semantics not
yet complete/stable; GCC code base huge and cluttered
LLVM IR: low-level IR, not directly usable as a machine
model; backward compatibility issues; provides access to a
modern optimization infrastructure

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

NAC EBNF grammar

nac_top = {gvar_def} {proc_def}.
gvar_def = "globalvar" anum decl_item_list ";".
proc_def = "procedure" [anum] "(" [arg_list] ")"

"{" [{lvar_decl}] [{stmt}] "}".
stmt = nac | pcall | id ":".
nac = [id_list "<="] anum [id_list] ";".
pcall = ["(" id_list ")" "<="] anum ["(" id_list ")"] ";".
id_list = id {"," id}.
decl_item_list = decl_item {"," decl_item}.
decl_item = (anum | uninitarr | initarr).
arg_list = arg_decl {"," arg_decl}.
arg_decl = ("in" | "out") anum (anum | uninitarr).
lvar_decl = "localvar" anum decl_item_list ";".
initarr = anum "[" id "]" "=" "{" numer {"," numer} "}".
uninitarr = anum "[" [id] "]".
anum = (letter | "_") {letter | digit}.
id = anum | (["-"] (integer | fxpnum)).

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example translation flow: 2D Euclidean distance
approximation (overview)

Approximating the euclidean distance of a point (x, y) from the origin by:
eda = MAX((0.875 ∗ x + 0.5 ∗ y), x) where x = MAX(|a|, |b|) and
y = MIN(|a|, |b|)
Average error against (dist =

√
a2 + b2) is 4.7% when compared to the

bdistc (rounded-down) and 3.85% to the ddiste (rounded-up) value

#define ABS(x) ((x)>0?(x):(-x))

#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)<(y)?(x):(y))
int eda(int in1, int in2) {
int t1, t2, t3, t4, t5;
int t6, x, y;
t1 = ABS(in1);
t2 = ABS(in2);
x = MAX(t1, t2);
y = MIN(t1, t2);
t3 = x >> 3;
t4 = y >> 1;
t5 = x - t3;
t6 = t4 + t5;
return MAX(t6, x);}

ANSI C

procedure eda (in s16 in1,
in s16 in2, out u16 out1) {
localvar u16 x, y, t1, t2,
t3, t4, t5, t6, t7;

S_1:
t1 <= abs in1;
t2 <= abs in2;
x <= max t1, t2;
y <= min t1, t2;
t3 <= shr x, 3;
t4 <= shr y, 1;
t5 <= sub x, t3;
t6 <= add t4, t5;
t7 <= max t6, x;
out1 <= mov t7;}

NAC IR

abs

max

t1

min

t1

abs

t2 t2

add

max

t6

1

shr

1

3

shr

3

in1 in2

x

x

sub

x

mov

t7

y

out1

t3

t4

t5

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example translation flow: 2D Euclidean distance
approximation (VHDL code)

when S_ENTRY =>
ready <= ’1’;
if (start = ’1’) then
next_state <= S_001_001;

else
next_state <= S_ENTRY;

end if;
when S_001_001 =>
if (in1(15) = ’1’) then
t1_next <= slv(not(unsigned(in1)) + "1");

else
t1_next <= in1;

end if;
if (in2(15) = ’1’) then
t2_next <= slv(not(unsigned(in2)) + "1");

else
t2_next <= in2;

end if;
next_state <= S_001_002;

when S_001_002 =>
if (t1_reg > t2_reg) then
x_next <= t1_reg;

else
x_next <= t2_reg;

end if;
if (t1_reg < t2_reg) then
y_next <= t1_reg;

else

VHDL

y_next <= t2_reg;
end if;
next_state <= S_001_003;

when S_001_003 =>
t3_next <= "000" & x_reg;
t4_next <= "0" & y_reg;
next_state <= S_001_004;

when S_001_004 =>
t5_next <= slv(unsigned(x_reg)

- unsigned(t3_reg));
next_state <= S_001_005;

when S_001_005 =>
t6_next <= slv(unsigned(t4_reg)

+ unsigned(t5_reg));
next_state <= S_001_006;

when S_001_006 =>
if (t6_reg > x_reg) then
t7_next <= t6_reg;

else
t7_next <= x_reg;

end if;
next_state <= S_001_007;

when S_001_007 =>
out1_next <= t7_reg;
next_state <= S_EXIT;

when S_EXIT =>
done <= ’1’;
next_state <= S_ENTRY;

VHDL (cont.)Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

SSA (Single Static Assignment) form construction

Pseudo-statements called φ-functions join variable
definitions from different control-flow paths
Enforce a single definition site for each variable
False dependencies are naturally removed
Many analyses and optimizations are simplified
HercuLeS supports minimal SSA (in the number of φs) and
intrablock-only (pseudo) SSA
i = 123
j = i * j

PRINT(j)
t = j > 5

i = i + 1

T

F

t = i <= 234

T

F

Prior SSA

i0 =
j0 =
i1 = 123
j1 = i1 * j0

i2 = phi(i1, i4)
PRINT(j1)
t0 = j1 > 5

i4 = i2 + 1

T

F

t1 = i4 <= 234

i7 = phi(i4, i2)

T

F

Minimal SSA

i$1 = 123
j$1 = i$1 * j
i = i$1
j = j$1

PRINT(j)
t0$1 = j > 5

i$1 = i + 1
i = i$1 + 1

T

F

t1$1 = i <= 234

T

F

Pseudo SSA

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Introduction to the SSA (Static Single Assignment) form

SSA enforces a single def site for each variable
Pseudo-statements called φ-functions join variable
definitions from different control-flow paths
Many analyses and optimizations are simplified
HercuLeS supports minimal SSA (in the number of φs) and
pseudo-SSA algorithms

• Using a scan-based algorithm
I φ-functions for each variable in each basic block (BB)
I iterative removal of redundant φs

• Using pseudo-SSA form (kind of intrablock SSA)
I No φ-insertion
I Restore the unversioned variable names prior to the exit of

each BB

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

SSA construction example

i = 123
j = i * j

PRINT(j)
t = j > 5

i = i + 1

T

F

t = i <= 234

T

F

Prior SSA

i0 =
j0 =
i1 = 123
j1 = i1 * j0

i2 = phi(i1, i4)
PRINT(j1)
t0 = j1 > 5

i4 = i2 + 1

T

F

t1 = i4 <= 234

i7 = phi(i4, i2)

T

F

Minimal SSA

i$1 = 123
j$1 = i$1 * j
i = i$1
j = j$1

PRINT(j)
t0$1 = j > 5

i$1 = i + 1
i = i$1 + 1

T

F

t1$1 = i <= 234

T

F

Pseudo SSA

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

SSA destruction example

i0 =
j0 =
i1 = 123
j1 = i1 * j0
i2 = i1

PRINT(j1)
t0 = j1 > 5
i7 = i2

i4 = i2 + 1
i2 = i4
i7 = i4

T

F

t1 = i4 <= 234

T

F

Out of SSA

i0 =
j0 =
i1 = 123
j1 = i1 * j0

i2 = phi(i1, 1, i4, 5)
PRINT(j1)
t0 = j1 > 5

i4 = i2 + 1

T

F

t1 = i4 <= 234

i7 = phi(i2, 4, i4, 5)

T

F

Keeping SSA

BB1: i$1 = 123; j$1 = i$1 * j$0;
prevbb = 1; goto BB2;

BB2: switch (prevbb) {
case 1: i$2 = i$1; break;
case 5: i$2 = i$4; break;
default: break;}

printf("j$1 = %08x\n", j$1);
if (j$1 > 5) t0$3 = 1;
else t0$3 = 0;
prevbb = 2;
if (t0$3 == 1) {goto BB3;}
else {goto BB4;}

BB3: i$4 = i$2 + 1;
prevbb = 3; goto BB5;

BB4: prevbb = 4; goto BB6;
BB5: if (i$4 <= 234) t1$6 = 1;
else t1$6 = 0;
prevbb = 5;
if (t1$6 == 1) {goto BB2;}
else {goto BB6;}

BB6: switch (prevbb) {
case 4: i$7 = i$2; break;
case 5: i$7 = i$4; break;
default: break;}

C code for keeping
SSA

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Representing hardware as FSMDs

I/O interface

Port Dir. Description
clk I external clocking source
reset I asynchronous (or synchronous) re-

set
start I enable computation
din I data inputs
dout O data outputs
ready O the block is ready to accept new in-

put
valid O a data output port is streamed out
done O end of computation for the block

FSMD (Finite-State Machine with Datapath) as a MoC is
universal, well-defined and suitable for either data- or
control-dominated applications
FSMDs = FSMs with embedded datapath actions
HercuLeS supports extended FSMDs (hierarchical calls,
communication with on-chip memories, IP integration)

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Representing hardware as FSMDs (Finite-State Machine
with Datapaths)

FSMD as a MoC is universal, well-defined and suitable for
either data- or control-dominated applications
HercuLeS generates extended FSMD architectures
FSMDs are FSMs with embedded datapath actions within
the next state generation logic
HercuLeS FSMDs use fully-synchronous conventions and
register all their outputs
Array data ports are supported; multi-dimensional data ports
are feasible based on their equivalent single-dimensional
flattened array type definition
Use of din: in std_logic_vector(M*N-1 downto 0);

for M related ports of width N
A selection of the form din((i+1)*N-1 downto i*N) is
typical for a for-generate loop in order to synthesize
iterative structures

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Basic FSMD I/O interface

clk signal from external clocking source
reset asynchronous (or synchronous) reset
start enable computation
din data inputs

dout data outputs
ready the block is ready to accept new input
valid asserted when a certain data output port is streamed-out

from the block (generally it is a vector)
done end of computation for the block
Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Hierarchical calls between FSMDs

Supported to arbitrary depth
and complexity (apart from
recursion)
Example of a caller FSMD,
handing over computation to
callee superstate (a square root
computation)
Variable-related quantities are
represented by three signals:
*_next (value to-be-written),
*_reg (value currently read
from register), *_eval (callee
output)

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Communication with embedded memories

load Requires a wait-state register for devising a dual-cycle
substate (address + data cycles)

store Raises block RAM write. Stored data are made available in
the subsequent machine cycle

load
store

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Communication with embedded memories

Only two memory communication primitives are needed in
NAC: load and store

load Requires a wait-state register to devise a dual-cycle substate
(address + data cycles)

store Raises BRAM write. Stored data are made available in the
subsequent machine cycle

when STATE_1 =>
mem_addr <= index;
wstate_next <= not (wstate_reg);
if (wstate_reg = ’1’) then
mysignal_next <= mem_dout;
next_state <= STATE_2;

else
next_state <= STATE_1;

end if;
when STATE_2 =>
...

load example

when STATE_1 =>
mem_we <= ’1’;
mem_addr <= index;
mem_din <= mysignal_reg;
next_state <= STATE_2;

when STATE_2 =>
...

store example

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Operation chaining

Assign multiple data-dependent operations to a single
control step
Simple means for selective operation chaining involve
merging ASAP states to compound states
Intermediate registers are eliminated
Basic block partioning heuristic for critical path reduction

when S_1_3 =>
t3_next <= "000"&x_reg(15 downto 3);
t4_next <= "0"&y_reg(15 downto 1);
next_state <= S_1_4;

when S_1_4 =>
t5_next <= x_reg - t3_reg;
next_state <= S_1_5;

when S_1_5 =>
t6_next <= t4_reg + t5_reg;
next_state <= S_1_6;

...

when S_1_7 =>
out1_next <= t7_reg;
next_state <= S_EXIT;

when S_1_1 =>
...

t3_next <= "000"&x_next(15 downto 3);
t4_next <= "0"&y_next(15 downto 1);
t5_next <= x_next - t3_next;
t6_next <= t4_next + t5_next;
...

out1_next <= t7_next;
next_state <= S_EXIT;

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Automatic IP integration

IPs Third-party components used in hardware systems (e.g.
dividers, floating-point operators)
How to import and use your own IP

1 Implement IP and place in proper subdirectory
2 Add entry in text database
3 Replace operator uses by black-box function calls
4 HercuLeS creates a hierarchical FSMD with the requested

callee(s)
Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

The optimization space of HercuLeS

level

source language

N-Address Code

Graphviz CDFGs

VHDL

Arithmetic

Loop-oriented

Restructuring

SSA construction
if-conversion
peephole transformations
basic block partitioning
black box function insertion
GNU MP extensions

sequential scheduling
ASAP scheduling
dead node elimination

hardware interpretation of SSA form
synchronous embedded memories (block RAMs)
operation chaining

constant multiplication optimization
constant division optimization
optimization of polynomial expressions
low-level superoptimizations

partial loop unrolling
full loop unrolling
loop coalescing
strip mining

array flattening
statement vectorizer

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Optimizations

Optimizers are implemented as external modules
ANSI/ISO C optimizations

• Basic loop optimizations: strip mining, loop coalescing,
partial and full loop unrolling

• Syntactical transformations among iteration schemes
• Arithmetic optimizations

I Constant multiplication/division/modulo
I Optimization of linear systems
I Univariate polynomial evaluation: Horner scheme, Estrin

scheme
I Multivariate polynomial evaluation: parallelized, optimized,

brute-force variants
NAC optimizations

• Single constant multiplication/division; peephole
optimizations; use of superoptimized operation sequences

Graphviz/CDFG optimizations, e.g. redundancy removal
VHDL optimizations, e.g. operation chaining

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Optimizations at the C level

Source-level optimizer targets speed improvement via generic
code restructuring and loop-specific optimizations
Implemented as TXL transformations

Transformation Description Params
bump Alter loop boundaries by an offset offset, step
extension Extend loop boundaries lo, hi
reduction Reverse the effect of extension –
reversal Reverse iteration direction –
normalization Convert arbitrary to well-behaved loops –
fusion Merges bodies of successive loops –
coalescing Nested loops into single loop –
unswitching Move invariant control code –
strip mining Single loop tiling tilesize

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Optimizations at the NAC level

Examples include if-conversion and arithmetic optimizations
(constant multiplication and division)
Integer constant division: replace a variable divider by
custom circuit
Use multiplicative inverse followed by a number of
compensation steps
Requires 2-9 states (amortized maximum)
Can be further optimized by operation chaining and
replacing the 64-bit (long long) constant multiply

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example: Prime factorization (1/4)

A streaming-output implementation of prime factorization

void pfactor(unsigned int x,
unsigned int *outp)

{

unsigned int i=2, n=x;
while (i <= n) {
while ((n % i) == 0) {
n = n / i;
*outp = i;

}

i = i + 1;
}

}

ANSI C

procedure pfactor(in u32 x, out u32 outp) {
localvar u32 D_1369, i, n;

L0005:
n <= mov x;
i <= ldc 2;
D_1366 <= jmpun;

D_1365:
D_1363 <= jmpun;

D_1362:
(n) <= divu(n, i);
outp <= mov i;
D_1363 <= jmpun;

D_1363:
(D_1369) <= modu(n, i);
D_1362, D_1364 <= jmpeq D_1369, 0;

D_1364:
i <= add i, 1;
D_1366 <= jmpun;

D_1366:
D_1365, D_1367 <= jmple i, n;

D_1367:
nop;

}

NAC
Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example: Prime factorization (2/4)

BB1

BB2

U

BB3

T

BBX

F

BB4

T

BB5

FU

U

CFG

add(14)

mov(15)

i_6

0

jmpeq(9)

0

1

1

2

ldc(1)

2

div(10)

mov(12)

n_5

F

T

jmple(6)

nop(17)

F

mod(7)

T

jmpun(13)

U

jmpun(16)

mov(5)

U

jmpun(4)

U

mov(2)

i_1

mov(0)

mov(3)

n_1

mov(11)

outp

outp

n_3

mov(8)

n_3

n_3

i_2

i_2

i_2

i_2i_2

i_2

i_2

i_2

i_2i_2

n_2n_2

n_3

n_3

n_3

n_2n_2

t0_4

x

x

CDFG

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example: Prime factorization (3/4)

when S_002_001 =>
modu_10_start <= ’1’;
next_state <= S_004_001;

when S_003_001 =>
if (divu_6_ready=’1’ and

divu_6_start=’0’) then
n_1_next <= n_1_eval;
next_state <= S_003_002;

else
next_state <= S_003_001;

end if;
...

when S_004_001 =>
if (modu_10_ready=’1’ and

modu_10_start=’0’) then
D_1369_1_next <= D_1369_1_eval;
next_state <= S_004_002;

else
next_state <= S_004_001;

end if;
when S_004_002 =>
if (D_1369_1_reg = CNST_0) then
divu_6_start <= ’1’;
next_state <= S_003_001;

else
next_state <= S_005_001;

end if;

VHDL

...

divu_6 : entity WORK.divu(fsmd)
generic map (W => 32)
port map (
clk,
reset,
divu_6_start ,
n_reg,
i_reg,
n_1_eval,
divu_6_done ,
divu_6_ready);

modu_10 : entity WORK.modu(fsmd)
generic map (W => 32)
port map (
clk,
reset,
modu_10_start ,
n_reg,
i_reg,
D_1369_1_eval ,
modu_10_done ,
modu_10_ready);

VHDL (cont.)

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example: Prime factorization (4/4)

00000004 00000002 00000002

00000005 00000005

00000006 00000002 00000003

00000007 00000007

00000008 00000002 00000002 00000002

00000009 00000003 00000003

0000000a 00000002 00000005

x=00000004 outp=00000002 outp_ref=00000002
x=00000004 outp=00000002 outp_ref=00000002
PFACTOR OK: Number of cycles=212
x=00000005 outp=00000005 outp_ref=00000005
PFACTOR OK: Number of cycles=265
x=00000006 outp=00000002 outp_ref=00000002
x=00000006 outp=00000003 outp_ref=00000003
PFACTOR OK: Number of cycles=256
x=00000007 outp=00000007 outp_ref=00000007
PFACTOR OK: Number of cycles=353
x=00000008 outp=00000002 outp_ref=00000002
x=00000008 outp=00000002 outp_ref=00000002
x=00000008 outp=00000002 outp_ref=00000002
PFACTOR OK: Number of cycles=291
x=00000009 outp=00000003 outp_ref=00000003
x=00000009 outp=00000003 outp_ref=00000003
PFACTOR OK: Number of cycles=256
x=0000000A outp=00000002 outp_ref=00000002
x=0000000A outp=00000005 outp_ref=00000005

Input vector data

Diagnostic output

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example: Multi-function CORDIC

Universal multi-function CORDIC IP core automatically generated from
NAC
Supports all directions (ROTATION, VECTORING) and modes
(CIRCULAR, LINEAR, HYPERBOLIC); uses Q2.14 fixed-point arithmetic
I/O interface similar to Xilinx CORDIC (xin, yin, zin; xout, yout,
zout; dir, mode)
Computes cos(xin), sin(yin), arctan(yin/xin), yin/xin,

√w, 1/√w with
xin = w + 1/4, yin = w − 1/4 (in two stages: a. y = 1/w, b. z = √y)
Monolithic design, low area, requires external scaling (e.g. for the square
root)
Self-checking testbench autogenerated
Scheduler: ASAP + chaining w/o BB partitioning
Lines-of-code: C = 29, NAC = 56, Graphviz = 178, VHDL = 436

Design Description Max. freq. Area (LUTs)
cordic1cyc 1-cycle/iteration; uses asynchronous read

LUT RAM
204.5 741

cordic5cyc 5-cycles/iteration; uses synchronous read
(Block) RAM

271.5 571, 1 BRAM

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Excerpt from ANSI C implementation of multi-function
CORDIC

Hand-optimized by Nikolaos Kavvadias
void cordicopt(dir, mode, xin, yin, zin, *xout, *yout, *zout) {
...

x = xin; y = yin; z = zin;
offset = ((mode == HYPER) ? 0 : ((mode == LIN) ? 14 : 28));
kfinal = ((mode != HYPER) ? CNTAB : CNTAB+1);
for (k = 0; k < kfinal; k++) {
d = ((dir == ROTN) ? ((z>=0) ? 0 : 1) : ((y<0) ? 0 : 1));
kk = ((mode != HYPER) ? k :

cordic_hyp_steps[k]);
xbyk = (x>>kk);
ybyk = ((mode == HYPER) ? -(y>>kk) : ((mode == LIN) ? 0 :

(y>>kk)));
tabval = cordic_tab[kk+offset];
x1 = x - ybyk; x2 = x + ybyk;
y1 = y + xbyk; y2 = y - xbyk;
z1 = z - tabval; z2 = z + tabval;
x = ((d == 0) ? x1 : x2);
y = ((d == 0) ? y1 : y2);
z = ((d == 0) ? z1 : z2);}

*xout = x; *yout = y; *zout = z;}

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Multi-function CORDIC VHDL (partial)

architecture fsmd of cordicopt is
type state_type is (S_ENTRY, S_EXIT, S_001, S_002, S_003, S_004);
signal current_state , next_state: state_type;
-- Scalar, vector signals and constants

...

begin
process (*)
begin
...

case current_state is ...
when S_003 =>
t1_next <= cordic_hyp_steps(to_integer(unsigned(k_reg(3 downto 0))));
if (lmode_reg /= CNST_2(15 downto 0)) then
kk_next <= k_reg(15 downto 0);

else
kk_next <= t1_next(15 downto 0);

end if;
t2_next <= shrv4(y_reg, kk_next, ’1’);
...

x1_next <= slv(signed(x_reg) - signed(ybyk_next(15 downto 0)));
y1_next <= slv(signed(y_reg) + signed(xbyk_next(15 downto 0)));
z1_next <= slv(signed(z_reg) - signed(tabval_next(15 downto 0)));

...

end process;
zout <= zout_reg;
yout <= yout_reg;
xout <= xout_reg;
end fsmd;

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Floating-point example: lerp – linear interpolation (1/2)

lerp(t, a, b) = a ∗ (1. − t) + b ∗ t = a + t(b − a) calculates a
number between two numbers a, b at a specific relative
increment 0.0 ≤ t ≤ 1.0
Used in computer graphics for drawing dotting lines and in
Perlin noise functions (for terrain generation)

#define LERP(t,a,b) (a+t*(b-a))
double lerp(double t,
double x, double y) {
double temp;
temp = LERP(t, x, y);
return (temp);

}

ANSI C

procedure lerp(in f1.11.52 t,
in f1.11.52 x,
in f1.11.52 y,
out f1.11.52 D_1365) {
localvar f1.11.52 D_1363;
localvar f1.11.52 D_1364;
localvar f1.11.52 temp;

L0005:
D_1363 <= sub y,x;
D_1364 <= mul D_1363,t;
temp <= add D_1364,x;
D_1365 <= mov temp;

}

NAC IR

D_1365

add

mov

temp

D_1365

mul

D_1364

sub

D_1363

t

t

x

x

x

y

y

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Floating-point example: lerp – linear interpolation (2/2)

entity lerp is
port (
clk : in std_logic;
reset : in std_logic;
start : in std_logic;
t : in float64;
x : in float64;
y : in float64;
D_1365 : out float64;
done : out std_logic;
ready : out std_logic

);

end lerp;

VHDL I/O interface

when S_001_001 =>
D_1363_next <= subtract(y, x);
next_state <= S_001_002;

when S_001_002 =>
D_1364_next <= multiply(D_1363_reg , t);
next_state <= S_001_003;

when S_001_003 =>
temp_next <= add(D_1364_reg , x);
next_state <= S_001_004;

when S_001_004 =>
D_1365_next <= temp_reg(11 downto -52);
next_state <= S_EXIT;

VHDL FSMD excerpt

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Design space exploration configurations

Explore different choices both in frontend translation (e.g.
SSA construction) and hardware optimization
Numerous configurations are possible
The following configuration sets will be used
O1 sequential scheduling
O2 ASAP scheduling using SSA
O3 O2 with operation chaining (collapsing dependent operations

to a single state)
O4 O3 with pseudo-SSA construction
O5 O3 with preserving φ functions
O6 O3 with block RAM inference

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Fibonacci series example: Introduction

Fibonacci series computation is
defined as

F(n) =

 0 n = 0
1 n = 1
F(n − 1) + F(n − 2) n > 1

Three iterative variants
A Addition and subtraction in the

main loop
B Addition with one more

temporary
C Addition with an in-situ

register swap

uint32 fibo(uint32 x) {
uint32 f0=0, f1=1, k=2;

#ifdef B
uint32 f;

#endif
do {
k = k + 1;

#if A
f1 = f1 + f0;
f0 = f1 - f0;

#elif B
f = f1 + f0;
f0 = f1;
f1 = f;

#elif C
f0 = f1 + f0;
SWAP(f0, f1);

#endif
} while (k <= x);

#if A || B
return (f1);

#else
return (f0);

#endif
}

C code
Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Fibonacci series example: Machine cycles

Design Cycles Design Cycles Design Cycles
A0 n B0 n C0 2n − 1
A1 4n + 3 B1 5n + 2 C1 7n + 1
A2 4n + 2 B2 4n + 2 C2 7n
A3-A5 n + 2 B3-B5 n + 2 C3-C5 2(n + 1)

Hand-optimized designs are A0, B0, C0
The benefit of ASAP is not significant due to the data
dependencies in the algorithm
Cycle reduction is achieved through operation chaining
HercuLeS can closely match the result of a human expert for
optimization schemes O3-O5
The slight differences in cycle performance are due to
specific design choices of the human expert

• initializing f0, f1 and k in the FSMD entry state
• passing the output data argument without use of an

intermediate register

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Fibonacci series example: Execution time vs LUTs

Better results are placed near the bottom-left corner
Pareto-optimal designs by human expert: B0 and C0
Pareto-optimal designs by HercuLeS: B2, B3, B4

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Fibonacci series example: Execution time vs Registers

Better results are placed near the bottom-left corner
Pareto-optimal designs by human expert: A0
Pareto-optimal designs by HercuLeS: A1 and B3

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Benchmark results: Speed

Average computation time is reduced by 44.3% when comparing O1 to O3
This gain is limited to 37.3% for O6 due to block RAM timing
float2half and half2float achieve up to 4× execution time reduction
Maximum operating frequencies in the range of 119-450MHz

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Benchmark results: Area

O1 generates (slower and) smaller hardware in terms of LUTs and registers
O3 introduces the highest LUT requirements; O2 the highest register demand
Registers are reduced by 17.5% among O2 and O6; LUTs by 14% among O3 and O6
Block RAM inference leads to significant LUT/register area reduction (smwat)

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Example algorithmic benchmarks

Bench. Type Description C
LOC

NAC dot VHDL

edgedet M Edge detection 35 145 873 1921
float2half C Convert float-to-half 25 71 157 370
fsme M Motion estimation 65 159 1483 2730
half2float C Convert half-to-float 12 32 55 174
icbrt C Integer cubic root 18 36 83 213
isqrt C Integer square root 20 28 84 199
mandel C/M Mandelbrot fractal 60 108 259 639
matmult M Matrix mult. 40 94 763 1511
sierpinski C/M Sierpinski triangle 51 70 300 630
smwat M Smith-Waterman kernel 68 159 753 1615
walsh M 2D Walsh transform 32 71 326 704
yuv2rgba C Color space conv. 27 98 240 679

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Against competition

New frontends, analyses and optimizations are easy to add
Maps character I/O and malloc/free to efficient hardware
Uses open IRs and formats (GIMPLE, NAC, Graphviz)
Vendor and technology-independent HDL code generation
Preliminary results against Vivado HLS 2013.1
Benchmark Vivado HLS HercuLeS

LUTs Regs Time (ns) LUTs Regs Time (ns)
Array sum 102 132 26.5 103 63 73.3
Bit reversal 67 39 72.0 42 40 11.6
Edge detection∗ 246 130 1636.3 680 361 1606.4
Fibonacci series 138 131 60.2 137 197 102.7
FIR filter 102 52 833.4 217 140 2729.4
Greatest common
divisor

210 98 35.2 128 93 75.9

Cubic root approx. 239 207 260.6 365 201 400.5
Population count 45 65 19.4 53 102 26.1
Prime sieve∗ 525 595 6108.4 565 523 3869.5
Sierpinski triangle 88 163 11326.5 230 200 16224.9

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

The HercuLeS GUI

Bundled with HercuLeS v1.0.0 (2013a) released on June 30
Specify code generation, simulation and synthesis options
Includes embedded results viewer

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Summary

Z HercuLeS is an extensible HLS environment for hardware
and software engineers
Straightforward to use from ANSI C, generic assembly
(NAC) or custom DSLs (Domain Specific Languages) to
producing compact VHDL designs with competitive QoR
Product information

• HercuLeS GUI for specifying code generation, simulation and
synthesis options

• Commercial distribution: http://www.ajaxcompilers.com
• Technical details: http://www.nkavvadias.com/hercules
• FREE, BASIC, and FULL software licensing schemes

(2013.a version)

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

http://www.ajaxcompilers.com
http://www.nkavvadias.com/hercules

HercuLeS demo

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

fibo.c: Iterative computation of the Fibonacci series

Setup the environment: source env-hercules-lin.sh
Inspect input ANSI C code: fibo function, main() used for
data vector generation
Compile C code; inspect fibo_test_data.txt
Use the run-fibo.sh script
After the simulation ends

• End-upon-assertion
• Inspect diagnostic output fibo_alg_test_results.txt
• Inspect generated NAC and Graphviz CDFG
• Visualize CFG and CDFG with gwenview
• Inspect generated VHDL code: code size, naming

conventions, readability of code
• Inspect waveform data (fibo_fsmd.ghw)

Open discussion (e.g. generation settings, more
optimizations, comparison to manual design, etc)

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

easter.c: Easter Sunday calculations

Easter Sunday calculations based on Gauss’ algorithm
No need to have any knowledge of the algorithm!
Compile C code; inspect easter_test_data.txt
Use the run-easter.sh script
After the simulation ends

• Inspect generated NAC
• Inspect generated VHDL code
• Automatic IP integration for modulo
• Automatic optimization of constant multiplications
• Inspect results; did we get last year’s Easter date right?

Open discussion

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

fir.c: Finite Impulse Response filter

Small FIR example
Reads data from single-dimensional arrays
Compile C code; inspect fir_test_data.txt
Use the run-fir.sh script
After the simulation ends

• Inspect generated VHDL code: array access not to block
RAM

• Alter HercuLeS generation script (run-fir.sh) to enable
block RAM inference (-blockmem -read-first)

• Reiterate

Open discussion

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

FPGA demo 1: PLOTLINE IP

Demo IP that will be offered for free from Ajax Compilers
web store
Synthesizable RTL model of Bresenham’s line drawing
algorithm
Integer version of the algorithm using addition, subtraction,
bit shifting, comparison, absolute value and conditional
moves
Consists of a single loop that keeps track of the propagated
error over the x- and y-axis, which is then used for
calculating the subsequent pixel on the line
The loop terminates when the end point is reached

Z Invoke IMPACT and upload plotline_system.bit to the
Spartan-3AN Starter Kit board
Dimensions: 320x240, upscaled by x2 to VGA

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

FPGA demo 2: Pixel generation function

Maps the masked value of f (x, y) to the corresponding pixel
without using any memory
Generates either grey (same function) or colored (different
function per chromatic component) images

f (x, y) =

R← x, G← y, B← x ⊕ y, mode == 0
R← x, G← x + y, B← x + y, mode == 1
R← x, G← x ∗ y, B← x ∗ y, mode == 2
R← x, G← y, B← 0, mode == 3
R← x2 + y2, G← x2 + y2, B← x2 + y2, mode == 4
R← x + y, G← x − y, B← x ⊕ y, mode == 5
R← x2 − y2, G← x2 − y2, B← x2 − y2, mode == 6
R← max(x, y), G← max(x, y), B← max(x, y), mode == 7

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

Thank you

for your interest

Nikolaos Kavvadias nkavvadias@ajaxcompilers.com The HercuLeS HLS environment

