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1 HercuLeS basics

1.1 Introduction
HercuLeS is a High-level synthesis tool that automatically generates RTL VHDL for
non-programmable hardware. HercuLeS translates programs in NAC (a bit-accurate
typed-assembly language) to extended FSMDs (Finite-State Machines with Datapath)
in VHDL. HercuLeS can also be used for direct synthesis of ANSI C code to VHDL
with the help of a prototype translator from GIMPLE which is GCC’s new intermediate
representation to NAC.

Internally, HercuLeS comprises of two main components: a frontend (nac2cdfg)
and a graph-based backend (cdfg2hdl):

nac2cdfg translator from NAC (N-Address Code) IR, to flat CDFGs represented in
Graphviz

cdfg2hdl the actual HLS tool for automatic FSMD hardware and self-checking test-
bench generation from Graphviz files to VHDL

HercuLeS also has an additional ANSI C backend, allowing comparison of NAC
programs to reference ANSI C application code and the rapid prototyping of applica-
tions (VHDL simulation can be slow depending on design complexity, input data and
the simulator used).

VHDL code generated by HercuLeS can be simulated with GHDL and the industry-
standard Modelsim. It is possible to generate VHDL using either the Synopsys pack-
ages (the “old” de-facto standard) or the official IEEE library packages. HercuLeS
supports fixed-point arithmetic via sfixed and ufixed vectors as defined by the
VHDL-2008 fixed-point arithmetic packages. For this option, HercuLeS should be
notified (via command-line option) to use the IEEE packages.

1.2 Conceptual flow
The basic steps in the HercuLeS flow are shown in Fig. hercules-overview. C code is
passed to GCC for GIMPLE dump generation, optionally following an external source-
level optimizer. Textual GIMPLE is then processed by gimple2nac; alternatively the
user could directly supply a NAC translation unit (TU).
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Figure 2: The HercuLeS flow.

Various optimizations have been applied at the NAC level; peephole transforma-
tions, if-conversion, and function call insertion to enable IP integration. Heuristic basic
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block partitioning avoids the introduction of excessive critical paths due to operation
chaining.

The core of HercuLeS comprises of a frontend (nac2cdfg) and a graph-based back-
end (cdfg2hdl). nac2cdfg is a translator from NAC to flat CDFGs represented in
Graphviz. cdfg2hdl is the actual synthesis kernel for automatic FSMD hardware and
self-checking testbench generation from Graphviz CDFGs to VHDL.

nac2cdfg is used for parsing, analysis and CDFG extraction from NAC programs.
SSA form is supported based on minimal generation algorithms. Data flow analysis
uses on-demand graph reachability checking.

cdfg2hdl maps CDFGs to an extended FSMD MoC (Model of Computation). For
scheduling operations to specific states, either sequential or control- aware ASAP schedul-
ing can be used. ASAP can be combined with fast operation chaining for better state
workload balancing.

The generated FSMDs are generalized FSMs introducing embedded actions, with:
a) support of array input, output and streaming I/O ports, b) communication with em-
bedded block and distributed LUT memories, c) latency-insensitive local interface be-
tween caller and callee FSMDs, and d) interfacing to external IP blocks.

An additional ANSI C backend allows for rapid algorithm prototyping and NAC
verification. VHDL code can be simulated with GHDL and Modelsim.

1.3 Overview
The current features of HercuLeS include:

∙ Multiple subprograms (procedures) and procedure calls

∙ GIMPLE-to-NAC prototype frontend

∙ NAC (N-address code) parsing and semantic analysis

∙ Support for SSA form IR (in-to-SSA and out-of-SSA translations) based on Ap-
pel’s “really-crude” method and Aycock-Horspool’s iteratively eliminating algo-
rithms for minimal SSA

∙ Translation of NAC input programs to Graphviz CDFGs

∙ CDFG (organized as Graphviz graphs) parsing and semantic analysis

∙ Support of:

– multi-precision integer (std_logic_vector) and fixed-point (sfixed, ufixed)
arithmetic

– basic low-level IR operators

– extended FSMD model of computation

– “scalar” and “streamed” (emitting a series of result values over time) out-
puts

– single-dimensional arrays (Multidimensional arrays can always be reduced
to single-dimensional ones via matrix flattening)

– parameter passing through array procedure arguments

– automatic inference of block-RAM storage (for FPGAs)
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∙ Scheduling engines

– Sequential scheduling

– Control-aware ASAP scheduling

– Control-aware ASAP scheduling with operation chaining (2x-4x better per-
formance)

∙ Optimizations

– Source-to-source C code optimizer (preliminary)

– Integration of constant multiplication and division (kdiv) optimizations

– Integration of peephole-based optimizer

– Data flow analysis (conservative custom method using on-demand graph
reachability checks)

– Interface to a graph matching (graph and subgraph isomorphism) engine

∙ Various APIs:

– Common abstract data types

– Combinatorial objects generator

– Interval arithmetic

– Data flow analysis

– Simple graphs (undirected and directed)

– Attributed graphs (undirected and directed)

∙ Generators

– VHDL design code (FSMD datapath and control)

– Self-checking VHDL testbench

– Various script files (Makefiles, shell scripts) for GHDL/Modelsim simula-
tions

– Generation of Makefiles and scripts for running logic synthesis tools

∙ Hardware operator library

– Configurable multipliers

– Logarithm functions

– Variable shifters

– Dividers and modulo extractors

∙ TODO list

– Multi-port memory synthesis

– Access to global data from any procedure. Currently only the “root” pro-
cedure can access globals

– Support of dynamically allocated data

– Support of record data types (e.g. ANSI C structs)
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– Register optimization

– List scheduling with operation chaining optimizations

– Graph-based optimization engine

– Enhanced data flow analysis

– Recursive procedure support [Currently supported in the C backend]

1.4 Quick-start guide to the HercuLeS web interface
The purpose of this text is to provide a quick-start guide to using the HercuLeS high-
level synthesis tool through a web interface. This version of HercuLeS does not provide
access to certain features such as arithmetic and loop-oriented optimizers.

Minimal requirements:

∙ Linux or Windows XP/Cygwin (a POSIX environment offering bash and com-
mon UNIX utilities).

∙ GHDL or Modelsim.

0. Visit the HercuLeS web interface.

1. Unzip http://www.nkavvadias.com/hercules/hercules-contrib-vhdl.zip to a
local directory, e.g. C:\hercules\contrib

2. Create an empty directory, e.g. C:\hercules\tests

3. Either select the supplied (already pasted) example of the “fact” (factorial)
function or copy and paste your own. Download http://www.nkavvadias.
com/hercules/small-examples.zip for a few ANSI C and NAC (generic as-
sembly) code samples.

NOTES:

a. In order to use the automatically-generated testbench, add a
main() function to your code, enclosed by the preprocessor di-
rective:

#ifdef TEST
#endif

b. In addition, it is expected that the main() function generates in-
put and reference output samples in hexadecimal format and in
separate columns. A proper main() would generate such sam-
ples in a file named fact_test_data.txt (for the fact example).

c. Standard C library includes should be also enclosed by the
aforementioned directive.

d. Read Section 5 of http://www.nkavvadias.com/hercules/hercules-web-guide.
html for a short guide on ANSI C code style and limitations
(WIP).

4. On the web interface page, give the name of the top-level function/procedure
in your test code in the corresponding box. For instance, in the supplied
example this is: fact

7

http://ghdl.free.fr
http://www.model.com
http://www.nkavvadias.com/cgi-bin/herc.cgi
http://www.nkavvadias.com/hercules/hercules-contrib-vhdl.zip
http://www.nkavvadias.com/hercules/small-examples.zip
http://www.nkavvadias.com/hercules/small-examples.zip
http://www.nkavvadias.com/hercules/hercules-web-guide.html
http://www.nkavvadias.com/hercules/hercules-web-guide.html


5. In the following box, give your personal email, e.g. nikolaos.kavvadias@gmail.com
Unless you provide an email address, it is not possible to receive generated
files from HercuLeS.

6. Choose implementation options from the menu or keep the defaults (where
multiple options exist, the first option is the default):

a. Input in “C” or “NAC” language.

b. Scheduling policy: sequential, ASAP or ASAP with chaining
(could result in faster hardware).

c. [Optional] Select visualization options, in case you want to re-
ceive the CDFG and CFG visualizations of all processed func-
tions/procedures.

d. Select the generation of simulation scripts for either “GHDL”
or “Modelsim”.

e. [Optional] Force the usage of block RAMs for ROM/RAM
memory, when applicable.

7. Hit “Submit”.

8. In a few minutes (depending on your input), you will receive the generated
files in your mailbox, archived in .tar.gz format. Extract these files accord-
ingly to a new subdirectory inside C:\hercules\tests For the case
of the fact example this would be: C:\hercules\tests\fact

9. From the command line (e.g. cygwin bash), change directory to C:\hercules\tests\fact
and run the generated script that invokes the simulation: ./fact.sh

10. A successful simulation ends with an assertion reporting: “Failure: NONE”.
Examine the diagnostic output in fact_alg_test_results.txt to obtain the
number of target hardware cycles needed to process each sample. A sim-
ulation waveform is generated in file fact_fsmd.vcd. Your design files are
generated in VHDL (.vhd) using the IEEE libraries; for the fact example
this is: fact.vhd. The automatically-generated testbench is named after
the top-level function, e.g. fact_tb.vhd

2 More on HercuLeS

2.1 How it works
The following figure gives an internal view to the process flow of HercuLeS.

8

mailto:nikolaos.kavvadias@gmail.com


Figure 3: How HercuLeS works.

The user of HercuLeS must provide two input files:

∙ design.nac: A NAC program translation unit providing the entire application.
The root procedure must be named “design”.

∙ design_test_data.txt : Input/output reference values for use by the automatically-
generated testbench

Then, nac2cdfg generates several files:

∙ design.dot, subdes1.dot, ..., subdesn.dot : The Graphviz CDFGs for the root pro-
cedure and all other procedures in the NAC program.

∙ main.c, main.h, ansic.mk: Files generated for running an ANSI C simulation.
ansic.mk is an automatically-generated Makefile.

∙ design_nac.c, subdes1_nac.c, ..., subdesn_nac.c: ANSI C backend files provid-
ing C implementations of all procedures in the translation unit, generated directly
from NAC. They are used in the C simulations.

∙ design_pkg.vhd : VHDL package incorporating the components for all NAC pro-
cedures.

∙ design_cdt_pkg.vhd : VHDL package incorporating definitions of compound
data types (arrays).

Following this, there exist two possible flows; one for the generation and simulation
of synthesizable RTL VHDL for the NAC program, and one for a C simulation.

The C simulation flow proceeds by invoking the ansic.mk makefile by running:

make -f ansic.mk

from the command line. This produces a main.exe executable specification (e.g.
on Windows/Cygwin). Then, the executable is run:

./main

and output is produced at the command prompt.
The VHDL flow involves processing all CDFG (.dot) files by cdfg2hdl, the actual

backend tool of HercuLeS. cdfg2hdl generates several files:
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∙ design.vhd, subdes1.vhd, ..., subdesn.vhd : Synthesizable RTL VHDL for the
root procedure and all other procedures in the NAC program.

∙ ram.vhd : VHDL model of a dual-port synchronous read RAM for block RAM
inference. It is only used if block RAM mapping is enabled.

∙ design_tb.vhd : The automatically-generated self-checking testbench.

∙ design.mk : Makefile for running a GHDL simulation.

∙ design.do: Modelsim do macro file for running a Modelsim simulation.

∙ design.sh : Bash shell script initiating either a GHDL or Modelsim simulation.

Finally, the design.sh script is run from the command line:

./design.sh

This produces a text file (design_alg_test_results.txt) providing diagnostic output
from a simulation run. Output to the command prompt for any internal program vari-
able, procedure argument, etc can be produced by using the “print” NAC operation. A
“print” is mapped to a VHDL “assert” construct or a C standard library “printf”.

Also, a VCD (design_fsmd.vcd ) or GHW (design_fsmd.ghw) waveform file can be
generated for viewing with GTKwave. Windows binaries for GTKwave can be found
at http://www.dspia.com/gtkwave.html.

2.2 nac2cdfg
The usage of the nac2cdfg is as follows:

nac2cdfg [options] input.nac

where options is one or more of the following:

-d: Enable debug output.

-force-data-types: Force predefined data types as given in NAC code. Essentially
disables the effect both interval analysis and the alternative of using the unknown
data type na.

-permissive: Allows non-strict forms and macrostatements of the NAC programming
language.

-ssa: Internal construction of SSA (Static Single Assignment) form.

-pseudo-ssa: Internal construction of local SSA-like form.

-use-appel: Enables SSA construction using Appel’s algorithm.

-use-aycockhorspool: Enables SSA construction using the Aycock-Horspool algo-
rithm (default).

-opt-spbb: Enables optimization 3 as discussed in the Aycock-Horspool paper, which
omits generating phi statements for single-predecessor BBs. Supported only
with -use-appel and -keep-ssa.
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-keep-ssa: Does not perform out-of-SSA conversion and thus keeps PHI statements in
the generated CDFGs.

-limit-nacs: Limits the number of NACs in a translation unit to NAC_LIMIT (about
25).

-emit-nac: Emit the equivalent NAC program after processing (including SSA con-
version, if enabled).

-emit-ansic: Emit the equivalent ANSI C program after processing (including SSA
conversion, if enabled).

-emit-cfg: Generate the Graphviz representations for all procedure CFGs.

-dump-varnum-nac: Dump the equivalent NAC program after SSA variable number-
ing.

-dump-phiins-nac: Dump the equivalent NAC program after SSA PHI insertion.

-dump-phimin-nac: Dump the equivalent NAC program after SSA PHI minimiza-
tion.

-dump-phielm-nac: Dump the equivalent NAC program after SSA PHI elimination.

-dump-simdce-nac: Dump the equivalent NAC program after post-SSA dead code
elimination.

-dump-tgf: Dump TGF (Trivial Graph Format) representations of program informa-
tion.

-dump-arg: Dump ARG (attributed relational graph) representations of program in-
formation.

-dump-grh: Dump simple edge-list representations of program information.

-dump-poset: Dump poset (.p) file representations of program information.

2.3 cdfg2hdl
The usage of the cdfg2hdl is as follows:

cdfg2hdl [options] input.dot

where options is one or more of the following:

-d: Enable debug output (nothing yet).

-sched-<mode>: Perform scheduling on predefined acyclic regions. Valid options for
<mode>: {sequential, asap, naive}.

-mpint: Use multiple-precision arithmetic as implemented by the public domain fgmp
library.

-streaming: Generate code for hardware units with streaming output(s), generating a
sequence of values.

-vhd2vl: Generate code more friendly to the “vhd2vl” tool.
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-use-rising-edge: Use calls to rising_edge for clock event detection.

-use-component-pkg: Generate a package “use” for system-wide components.

-ghw: Generate a GHDL Waveform file (.ghw) after simulation.

-vcd: Generate a VCD waveform file (.vcd) after simulation.

-read-through, -read-first: Specify the mode for block RAM synchronous reads (de-
fault: read-first).

-blockmem: Generate embedded block memories via inference.

-synopsys: Use the de-facto Synopsys IEEE library in the generated design code (de-
fault).

-ieee: Use the normative IEEE library in the generated design code.

-hw-phis: Generate hardware for direct support of phi statements.

-fxp-trn-wrap: Support for fixed-point arithmetic with truncation (quantization mode)
and wrapping (overflow mode). This is the default option.

-fxp-trn-sat: Support for fixed-point arithmetic with truncation (quantization mode)
and saturation (overflow mode).

-fxp-rnd-wrap: Support for fixed-point arithmetic with rounding (quantization mode)
and wrapping (overflow mode).

-fxp-rnd-sat: Support for fixed-point arithmetic with rounding (quantization mode)
and saturation (overflow mode).

-ghdl: Generate support files for GHDL simulation (default).

-mti: Generate support files for Modelsim simulation.

-quick-abort: Abort simulation immediately following the first error.

2.3.1 CDFG construction

A novel, fast CDFG construction algorithm has been devised for both SSA and non-
SSA NAC forms producing flat CDFGs as Graphviz files. A CDFG symbol table item
is a node (operation, procedure call, globalvar, or constant) or edge (localvar) with
user-defined attributes: the unique name, label and data type specification; node and
edge type enumeration; respective order of incoming or outgoing edges; input/output
argument order of a node and basic block index. Further attributes can be defined, e.g.
for scheduling bookkeeping.

This approach is unique since it focuses on building the CDFG symbol table (st)
from which the associated graph (cdfg) is constructed as one possible of many facets.
It naturally supports loop-carried dependencies and array accesses.

// CDFG construction algorithm accepting BASIL input.
NACtoCDFG()

input List BASILs, List variables, List labels, Graph cfg;
output SymbolTable st, Graph cdfg;
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begin
Insert constant, input/output arguments and globalvar
operand nodes to st;
Insert operation nodes;
Insert incoming {global/constant/input, operation} and
outgoing {operation, global/output} edges;
Add control-dependence edges among operation nodes;
Add data-dependence edges among operation nodes,
extract loop-carried dependencies via cfg-reachability;
Generate cdfg from st;

end

3 gimple2nac
gimple2nac translates GIMPLE dumps to NAC TUs, which presents challenges. Cur-
rently, GIMPLE loses source semantics such as global scope variables. A workaround
for some cases is the definition of static variables in the original source. Other issues
involve: format inconsistencies following different optimization passes, handling la-
bels and array initialization sequences, destroyed interfaces and lack of bit-accuracy.
Some of these problems are targeted by a GCC rewrite [GIMPLEbe] that will allow
emitting GIMPLE as a target language.

3.1 Introduction
GIMPLE is the machine-independent intermediate representation used in modern GCC
releases (post version 4.0). While the GIMPLE API for code generation and manipu-
lation has matured over time, the corresponding textual representation is yet to be in a
stable form. This issue hampers many serious efforts for code generation from and to
GIMPLE.

Good candidates for the textual representation seem to have been in play for some
time. The wiki site http://gcc.gnu.org/wiki/GIMPLE sketches the textual IR that is
expected to be implemented by the GIMPLE frontend and backend (both under devel-
opment). Another case of a textual GIMPLE are the formats generated as a GIMPLE
dumps. We distinguish here two formats: the format in *.t004.gimple files (tagged
GIMPLE) and the one e.g. in *.t140.optimized files (GIMPLE-C). Both formats ex-
press the low-level GIMPLE representation, which is closer to classic three-address
code than high-level GIMPLE; the latter is closer to the GENERIC AST represen-
tation. An extended form of GIMPLE dumps are expected to be established as the
GIMPLE language semantics.

For reference tagged GIMPLE is generated by the command-line option:

-fdump-tree-all-raw

while GIMPLE-C is generated by:

-fdump-tree-all and -fdump-tree-gimple

the latter only emitting the *.t004.gimple file.
The rest of this document discusses open issues with the textual GIMPLE IRs,

focusing on the tagged GIMPLE format. It will not cover extended semantics issues
that are covered much better at http://gcc.gnu.org/wiki/GIMPLEFrontEnd
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3.2 Target audience
This section is expected to be of interest to compiler/translator implementors using
GIMPLE as either a source or target language.

3.3 Issues with tagged GIMPLE
Here follows a listing of some issues that can be identified with using tagged GIMPLE.
Most of them apply to the GIMPLE-C format as well.

3.3.1 Losing the original semantics of the source program

One such example is the omission of emitting global variables. A workaround for some
cases is the definition of static variables in the original source. This approach provides
only specific file/translation unit scope to globals but it is not certain whether the extern
specifier is handled properly for referencing these globals from external scope.

3.3.2 Inconsistency in handling labels

Automatically generated labels (by the gimplifier) and labels defined in the source
program are represented differently. The first category are enclosed in single wedges <
> while the later are explicitly defined and are used without wedges.

For example, this is the definition of an automatically generated label:

gimple_label <<D.1983>>

while the following is the (redundant) definition:

void V1 = <<< error >>>; ... ‘‘gimple_label <V1>

and the use of a source label:

gimple_cond <eq_expr, D.1985, 1, V5, <D.1986>>

3.3.3 Destroyed interfaces

Function interfaces are not maintained appropriately since the original argument types
in a function definition may be replaced. This is the case with array arguments (with
static sizes) in the definition of non-root procedures.

Here follows an example. This is the a partial view of the source program:

void evalcoins(int n, int amount, int C[], int *ncoins, int D[])
{

...
}

void coins(int n_eurocents, int *n_coins_used)
{

int C_euro[15], D_euro[15];
...
evalcoins(15, n_eurocents, C_euro, &n_items, D_euro);
...
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}

However, this is the tagged GIMPLE form of the same program:

evalcoins (int n, int amount, int * C, int * ncoins, int * D)
gimple_bind <

...
>

coins (int n_eurocents, int * n_coins_used)
gimple_bind <

int C_euro[15];
int D_euro[15];
...
gimple_call <evalcoins, NULL, 15, n_eurocents,

&C_euro[0], &n_items, &D_euro[0]>
...

>

3.3.4 Pointer expressions

Low-level GIMPLE (tagged and GIMPLE-C) use two basic specific operations for
dealing with pointer expressions and indirect references, the pointer_plus_expr
and indirect_ref.

A pointer_plus_expr in tagged GIMPLE appears as follows:

gimple_assign<pointer_plus_expr, D.1986, D, D.1985>

where D is an array, D.1985 a temporary int variable and D.1986 a temporary
variable defined as pointer to int.

The same in GIMPLE-C is the following:

D.1986 = D + D.1985

This operation adds the offset determined by D.1985 to the base address of array
D, expressed as D. Pointer D.1986 then can be used for intexing the array.

A typical idiom in generated GIMPLE suggests that pointer_plus_expr is
followed by an indirect_ref. The indirect reference is used to access the array
and loading the contents of a memory position to a variable.

An indirect_ref in tagged GIMPLE appears as follows:

gimple_assign<indirect_ref, D.1987, *D.1986, NULL>

and the same in GIMPLE-C is:

D.1987 = *D.1986;

In order to avoid a thorough pointer analysis for establishing that D.1986 points to
the contents of array D, typical data-dependence analysis can be used to trace that D is
the referenced entity by D.1986.
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3.3.5 Function calls

Function calls are represented by gimple_call in tagged GIMPLE. Due to the is-
sue 3 (Destroyed interfaces), in some cases calls-by-reference appear when not really
needed. This refers to the simulated call-by-reference available in the C programming
language, and not the actual kind that can be found, e.g. in Perl.

For example the following call is by-reference:

gimple_call <..., &C_euro[0],...>

making use of the address of the first element of C_euro (the base address).
With interfaces kept unchanged, the following would suffice:

gimple_call <..., C_euro, ...>

3.3.6 Inconsistency in array initialization sequences

An array can be initialized either by a literal initialization list or by emitting a sequence
of operations for initializing its contents. From a black-box point of view, it seems that
the gimplifier arbitrarily chooses which approach to follow.

For example, in our example, the C_euro is initialized via explicit operations:

gimple_assign <integer_cst, C_euro[0], 1, NULL>
gimple_assign <integer_cst, C_euro[1], 2, NULL>
gimple_assign <integer_cst, C_euro[2], 5, NULL>
gimple_assign <integer_cst, C_euro[3], 10, NULL>
gimple_assign <integer_cst, C_euro[4], 20, NULL>
gimple_assign <integer_cst, C_euro[5], 50, NULL>
gimple_assign <integer_cst, C_euro[6], 100, NULL>
gimple_assign <integer_cst, C_euro[7], 200, NULL>
gimple_assign <integer_cst, C_euro[8], 500, NULL>
gimple_assign <integer_cst, C_euro[9], 1000, NULL>
gimple_assign <integer_cst, C_euro[10], 2000, NULL>
gimple_assign <integer_cst, C_euro[11], 5000, NULL>
gimple_assign <integer_cst, C_euro[12], 10000, NULL>
gimple_assign <integer_cst, C_euro[13], 20000, NULL>
gimple_assign <integer_cst, C_euro[14], 50000, NULL>

It is not clear why an initialization list is not used:

int C_euro[15] = {1, 2, 5, 10, 20, 50,
100, 200, 500, 1000, 2000, 5000,
10000, 20000, 50000};

Automatically generated labels (by the gimplifier) and labels defined in the source
program are represented differently. The first category are enclosed in single wedges <
> while the later are explicitly defined and are used without wedges.

For example, this is the definition of an automatically generated label:

gimple_label <<D.1983>>

while the following is the (redundant) definition:

void V1 = <<< error >>>; ... ‘‘gimple_label <V1>
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and the use of a source label:

gimple_cond <eq_expr, D.1985, 1, V5, <D.1986>>

3.3.7 Inconsistency of the tagged GIMPLE format

As discussed in the introduction, the tagged GIMPLE format uses alternate syntax for
the unoptimized (*.t004.gimple) and certain optimized (e.g. *.t140.gimple) interme-
diate code dumps. It would be clearer if a single convention throughout all GIMPLE
dumps.

3.3.8 Lack of bit-accurate semantics

The availability of bit-accurate data types is an interesting asset of modern compiler
infrastructures such as LLVM: http://www.llvm.org. LLVM uses the LLVM bitcode
IR which adheres to such semantics. On the other side, GCC GIMPLE might be too
closely coupled with C-like semantics. Especially, implementors of non-conventional
backend architectures (e.g. developers of hardware compilers) would be interested in a
form of GIMPLE with bit-accurate types.

For example, the following would denote a 14-bit unsigned integer and a 8.16
signed fixed-point representation, respectively.

∙ u14

∙ q8.16s

3.4 Final notes on GIMPLE
This section is a work-in-progress. Several aspects of programming language transla-
tion to low-level GIMPLE are not covered:

1. Support for recursion.

2. OMP semantics.

3. _Bool data types.

4. Explicit return types (other than void).

5. Semantics expected to be integrated as part of GCC mainline. These re-
flect the current status of the gimple-front-end branch, which adds
important capabilities to the GIMPLE infrastructure such as consistently-
styled declarations for pointers, arrays, and compound types (structs, unions).

4 The NAC programming language

4.1 Introduction
NAC (N-Address Code) is the name of a simplistic imperative programming language
with light semantics devised by Nikolaos Kavvadias. Its main use is as an executable/interpretable
intermediate representation for compilation frameworks (compilers, high-level synthe-
sis tools, etc).

NAC statements are either labels, n-address instructions or procedure calls.
A label is formatted as follows:
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∙ label:

An n-address instruction is actually the specification of a mapping from a set of n
ordered inputs to a set of m ordered outputs. An n-address instruction (or else termed
as an {m, n}-NAC) is formatted as follows:

∙ outp1, ..., outpm <= operation inp1, ..., inpn;

where

∙ operation is a mnemonic referring to an IR-level instruction

∙ outp1, ..., outpm are the m outputs of the instruction

∙ inp1, ..., inpn are the n inputs of the instruction

Similarly, a procedure call, which is a non-atomic operation is formatted as follows,
in order to distinguished from an atomic operation:

∙ (outp1, ..., outpm) <= procedure-name (inp1, ..., inpn);

where

∙ procedure-name is the name of called procedure.

For a procedure without input and output arguments, the following notation is used
to distinguish it from an atomic operation with no arguments:

∙ () <= procedure-name ();

NAC is a typed language. Data type specifications are essentially strings that can
be easily decoded by a regular expression scanner. All declared objects (global vari-
ables, constants, local variables, input and output procedure arguments) have a type
specification. Data types in NAC are classified in the following categories:

∙ UNSIGNED_INTEGER denoted as U<num>: [Uu][0-9]+

∙ SIGNED_INTEGER denoted as S<num>: [Ss][0-9]+

∙ Fixed-point numbers are denoted as Q<ipart>.F<ipart>[S|U]: Q[0-9]+.[0-9]+[S|U],
with ipart being the integer part and fpart the fractional part of the number.
SIGNED_FIXED_POINT uses the S suffix, whereas UNSIGNED_FIXED_POINT
uses the U suffix, correspondingly

∙ FLOATING_POINT denoted as F<spart>.<epart>.<mpart>: F[0|1].[0-9]+.[0-9]+,
with spart being the sign, epart the exponent and mpart the mantissa of the num-
ber

∙ RATIONAL (no consistent format yet)

∙ CONTINUED_FRACTION (no consistent format yet)

As of 2010-11-29, there is initial support for the SIGNED_FIXED_POINT and
UNSIGNED_FIXED_POINT data types. As of 2012-02-23 there is also initial support
(for the C backend) for the FLOATING_POINT data types, especially the IEEE-754
compliant “single” and “double”. Support for UNSIGNED_INTEGER and SIGNED_INTEGER
data types is considered mature.

In NAC parlance, the following keywords are used:
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globalvar a global scalar or single-dimensional array variable. An array variable
is permitted to have an optional numerical initialization. A scalar variable is
assumed to be initialized to zero.

localvar a local scalar or single-dimensional array variable. This variable is only
visible within the procedure. Again, an array variable is permitted to have an
optional numerical initialization. A scalar variable is assumed to be initialized to
zero.

in an input argument to the given procedure.

out an output argument to the given procedure.

Please note that the use of constant (declaration of a globally-visible constant
value) has been discontinued and will not be supported in the future.

4.2 NAC instructions
The NAC programming language is extensible, meaning that the grammar accepts user-
specific instruction mnemonics.

A common set of NAC instructions is listed below, along with the corresponding
format and description.

No-operation: nop

nop;

Performs no action at all.

Move operand: mov

dst1 <= mov src1;

Copy the contents of operand src1 to dst1.

Load constant: ldc

dst1 <= ldc cnst1;

Copy the value of cnst1 to operand dst1.

Unconditional jump: jmpun

S_dst1 <= jmpun;

Jump to label S_dst1.

Conditional jump: jmpeq, jmpne“, jmplt, jmple“, jmpgt, jmpge“

S_TRGT, S_TRGF <= jmpzz src1, src2;

where:

∙ zz can be one of the following:

– eq: jump if equal
– ne: jump if not equal
– lt: jump if less than
– le: jump if less than or equal
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– gt: jump if greater than
– ge: jump if greater than or equal

∙ src1, src2 are the instruction source operands

∙ S_TRGT, S_TRGF, are the target addresses for a true and false con-
dition, respectively

Binary logical instructions: and, ior, xor, nand, nor, xnor

dst1 <= <mnemonic> src1, src2;

where:

∙ mnemonic can be one of the following:

– and: Logical AND
– ior: Logical inclusive-OR
– xor: Logical exclusive-OR
– nand: Logical NAND
– nor: Logical NOR
– xnor: Logical XNOR

∙ src1, src2 are the source operands

∙ dst1 is the destination operand

Unary logical instruction: not

dst1 <= not src1;

Copy the 1’s-complement of operand src1 to dst1.

Binary arithmetic instructions: add, sub

dst1 <= mnemonic src1, src2;

where:

∙ mnemonic can be one of the following:

– add: 2’s-complement addition
– sub: 2’s-complement subtraction

∙ src1, src2 are the source operands

∙ dst1 is the destination operand

Unary arithmetic instructions: neg

dst1 <= neg src1;

Copies the negated version of src1 to dst1.

Quaternary multiplexing instruction: mux

dst1 <= muxzz src1, src2, src3, src4;

where:

∙ zz can be one of the following:

– eq: jump if equal
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– ne: jump if not equal
– lt: jump if less than
– le: jump if less than or equal
– gt: jump if greater than
– ge: jump if greater than or equal

∙ src1, src2, are the source operands compared: if (src1 zz src2)

∙ src3 is the copy operand when the comparison evaluates to TRUE

∙ src4 is the copy operand when the comparison evaluates to FALSE

∙ dst1 is the destination operand

∙ NOTE: A muxzz is equivalent to the following C code:

if (src1 zz src2) { // zz: "==", "!=", "<", "<=", ">", or ">="
dst1 = src3;

} else {
dst1 = src4;

}

Set on comparison instruction: set

dst1 <= setzz src1, src2;

where:

∙ zz can be one of the following:

– eq: jump if equal
– ne: jump if not equal
– lt: jump if less than
– le: jump if less than or equal
– gt: jump if greater than
– ge: jump if greater than or equal

∙ src1, src2, are the source operands compared: src1 zz src2

∙ src3 is the copy operand when the comparison evaluates to TRUE

∙ src4 is the copy operand when the comparison evaluates to FALSE

∙ dst1 is the destination operand (gets a value either 0 or 1).

∙ NOTE: A setzz is equivalent to the following C code:

‘‘dst1 = (src1 zz src2); // zz: "==", "!=", "<", "<=", ">", or ">="

Complex unary arithmetic instructions: abs

dst1 <= abs src1;

Copies the absolute value of src1 to dst1.

Complex binary arithmetic instructions: max, min

dst1 <= mnemonic src1, src2;

where:
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∙ mnemonic can be one of the following:

– max: Assign the maximum of src1 and src2 to dst1
– min: Assign the minimum of src1 and src2 to dst1

∙ src1, src2 are the source operands

∙ dst1 is the destination operand

Shift instructions: shl, shr

dst1 <= mnemonic src1, src2;

where:

∙ mnemonic can be one of the following:

– shl: Logical left shift of src1 by the amount stored in src2, with
the result copied to dst1

– shr: Either logical or arithmetic (depending on the operand data
types) shift of src1 by the amount stored in src2, with the result
copied to dst1

∙ src1, src2 are the source operands

∙ dst1 is the destination operand

Rotate instructions: rotl, rotr

dst1 <= mnemonic src1, src2;

where:

∙ mnemonic can be one of the following:

– rotl: Left rotation of the value of src1 by the amount stored in
src2, with the result copied to dst1

– rotr: Right rotation of the value of src1 by the amount stored in
src2, with the result copied to dst1

∙ src1, src2 are the source operands

∙ dst1 is the destination operand

Multiplication instructions: mul

dst1 <= mul src1, src2;

Multiplies the contents of src1 and src2 and copies the (possibly truncated)
result to dst1.

Combined division-modulus instructions: divrem

dst1, dst2 <= divrem src1, src2;

Divides the contents of src1 and src2 and copies the quotient to dst1 and
the remainder to dst2.

Division instructions: div, rem

dst1 <= mnemonic src1, src2;

where:
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∙ mnemonic can be one of the following:

– div: Divides the contents of src1 and src2 and copies the quo-
tient to dst1

– rem: Divides the contents of src1 and src2 and copies the re-
mainder to dst1

∙ src1, src2 are the source operands

∙ dst1 is the destination operand

Data type/bitwidth conversion instructions: zxt, sxt, trunc

dst1 <= mnemonic src1;

where:

∙ mnemonic can be one of the following:

– zxt: Zero-extends src1 to the (larger) bitwidth of dst1
– sxt: Sign-extends src1 to the (larger) bitwidth of dst1
– trunc: Truncates src1 to the (smaller) bitwidth of dst1

∙ src1 is the source operand

∙ dst1 is the destination operand

Bit manipulation instructions: bitins, bitext

dst1 <= mnemonic src1, src2, src3;

where:

∙ mnemonic can be one of the following:

– bitins: Insert a bitvector denoted by the downto range [src2..src3]
of src1 to dst1

– bitext: Extract a bitvector denoted by the downto range [src2..src3]
from src1 and assign it to dst1

∙ src1 is the source operand

∙ src2 are two source operands (constant or variables) that denote the
downto range. The runtime numerical value of src2 must be larger
or equal to src3, and within the range of dst1

∙ dst1 is the destination operand

These instructions define bitfield insertion and extraction primitives. They
can also be defined for fixed-point operands given additional constraints.

Load variable from array: load

dst1 <= load src1, src2;

Loads the contents of array src1 from the absolute address src2 to the
variable dst1.

Store variable to array: store

dst1 <= store src1, src2;

Stores the value of variable src1 to address src2 of array dst1.
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4.2.1 Fixed-point operators

The use of fixed-point arithmetic provides an inexpensive means for improved numeri-
cal dynamic range, when artifacts due to quantization and overflow effects can be toler-
ated. Rounding operators are used for controlling the numerical precision involved in a
series of computations; they are defined for inexact arithmetic representations such as
fixed- and floating-point. Proposed and in-use specifications for fixed-point arithmetic
of related practice include C99 and the Mentor ACDT (Algorithmic C Data Types).

Fixed-point arithmetic is a variant of the typical integral representation (2’s-complement
signed or unsigned) where a binary point is defined, purely as a notational artifact to
signify integer powers of 2 with a negative exponent. Assuming an integer part of
width IW > 0 and a fractional part with -FW < 0, the VHDL-2008 sfixed data
type has a range of 2^{IW-1}-2^{|FW|} to -2^{IW-1} with a representable
quantum of 2^|FW|. The corresponding ufixed type has the following range:
2^{IW}-2^{|FW|} to 0. Both are defined properly given a [IW-1:-FW] vector
range.

This is a proposed list of extension operators for use with fixed-point variables
support in the NAC programming language.

Conversion from integer to fixed-point format: i2ufx, i2sfx

dst1 <= i2zfx src1;

where:

∙ z can be one of the following:

– u: conversion to the ufixed (UNSIGNED_FIXED_POINT) for-
mat

– s: conversion to the sfixed (SIGNED_FIXED_POINT) format

∙ src1 is the source operand

∙ dst1 is the destination operand

Converts an integer to a fixed-point number without loss of precision.

Conversion from fixed-point to integer format: ufx2i, sfx2i

dst1 <= zfx2i src1;

where:

∙ z can be one of the following:

– u: conversion to the ufixed (UNSIGNED_FIXED_POINT) for-
mat

– s: conversion to the sfixed (SIGNED_FIXED_POINT) format

∙ src1 is the source operand

∙ dst1 is the destination operand

Converts a fixed-point number to an integer. In case of a non-zero frac-
tional part of the fixed-number, truncation occurs. The type of the integer
result (UNSIGNED_INTEGER or SIGNED_INTEGER) must be compat-
ible to the type of the fixed-point input argument to assure a proper con-
version.
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Resize instruction: resize

dst1 <= resize src1, src2, src3;

where:

∙ src1 is the source fixed-point operand

∙ src2, src3 are numerical values (integers) that denote the new size
(high-to-low range) of the resulting fixed-point operand

∙ dst1 is the destination fixed-point operand

Fixed-point rounding instructions: ceil, fix, floor, round, nearest, convergent

dst1 <= mnemonic src1;

where:

∙ src1 is the source operand

∙ dst1 is the destination operand

These operations are used to performing rounding of fixed-point operands
with different criteria. They emulate the behavior of corresponding MAT-
LAB intrinsic functions. Rounding behavior is summarized as follows:

∙ ceil: round towards plus infinity.

∙ fix: round towards zero.

∙ floor: round towards minus infinity.

∙ round: round to nearest; ties to greatest absolute value.

∙ nearest: round to nearest; ties to plus infinity.

∙ convergent: round to nearest; ties to closest even.

4.3 Macroinsructions
For simplifying programming in the NAC language, a set of macroinstructions are
available:

A) Automatic replacement of incomplete conditional jumps: The pattern

S_TRUE <= jmpxx opnd1, opnd2;

is replaced by:

S_TRUE, S_FALSE <= jmpxx opnd1, opnd2;

S_FALSE:

Label S_FALSE is generated only if it doesn’t already exist.
B) Addition of “forgotten” unconditional jumps. The pattern:

no-jump-instruction;

LABEL:

is replaced by:

no-jump-instruction;

LABEL <= jmpun;

LABEL:
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4.4 Structure of a NAC program
A NAC program can be specified in a single source file that can contain global variable
definitions and their initializations, and a list of procedures. Each procedure is com-
prised of the following: - the procedure name - a list of ordered input arguments - a list
of ordered output arguments - a list of localvar declarations - a list of statements (the
main NAC subprogram) - basic block labels

Label items point to basic block (BB) entry points and are defined as name, bb,
addr 3-tuples, where name is the corresponding identifier, bb the basic block enu-
meration, and addr the absolute address of the statement succeeding the label.

Statements are organized in the form of a C struct or equivalently a record (in
other programming languages) as follows:

typedef struct {
char *mnemonic; /* Designates the statement type. */
NodeType ntype; /* OPERATION or PROCEDURE_CALL. */
List opnds_in; /* Collects all input operands. */
List opnds_out; /* Collects all output operands. */
int bb; /* Basic block number. */
int addr; /* Absolute statement address. */

} _Statement;
typedef _Statement *Statement;

C-style record for encoding a BASIL statement.

The Statement ADT therefore can be used to model an (n,m)-operation. The input
and output operand lists collect operand items, as defined in the OperandItem data
structure definition:

typedef struct {
char *name; /* Identifier name. */
char *dataspec; /* Data type string spec. */
OperandType otype; /* Operand type representation. */
int ix; /* Absolute operand item index. */

} _OperandItem;
typedef _OperandItem *OperandItem;

C-style record for encoding an OperandItem.

The OperandItem data structure is used for representing input arguments (INVAR),
output arguments (OUTVAR), local (LOCALVAR) and global (GLOBALVAR) vari-
ables and constants (CONSTANT). If using a graph-based intermediate representation,
arguments and constants could use node and incoming or outgoing edge representa-
tions, while it is meaningful to represent variables as edges as long as their storage
sites are not considered.

The typical NAC program is structured as follows:

<Global variable declarations>

procedure <name-1> (
<comma-separated input arguments>,
<comma-separated output arguments>
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)
{

<Local variable declarations>
<NAC labels, instructions and procedure calls>

}
...
procedure <name-n> (

<comma-separated input arguments>,
<comma-separated output arguments>

)
{

<Local variable declarations>
<NAC labels, instructions and procedure calls>

}

4.5 Data type inference rules
Since version 0.0.3 of the standalone manual for the NAC programming language, the
need for declaring constant items has been eliminated, and for this reason constant
items are recognized by scanning through the NAC program prior any actual further
manipulations (e.g. code generation). A small set of simple rules are used for data type
inference of constant values:

1. When a constant appears in an “ldc” or “store” operation, it obtains the type of
the result operand.

2. When a constant appears in any other operation, then it obtains the type of the
first input operand. This assumes that the constant appears only as the second, third or
fourth input operand for this operation.

4.6 NAC grammar
Here follows the BNF-style grammar specification for the NAC programming lan-
guage.

4.6.1 YACC/bison grammar

This grammar uses the notation of the YACC/Bison parser generators.

%token T_LPAREN T_RPAREN T_LBRACE T_RBRACE T_LBRACKET T_RBRACKET
%token T_COMMA T_COLON T_SEMI T_ASSIGN T_EQUAL
%token T_PROCEDURE T_LOCALVAR T_GLOBALVAR T_CONSTANT T_IN T_OUT
%token T_ID

%start nac_top

%%

nac_top : procedure_list
| globalvar_def procedure_list
;

27



globalvar_def : globalvar_prefix id_list T_SEMI
| globalvar_def globalvar_prefix id_list T_SEMI
;

globalvar_prefix : T_GLOBALVAR type_spec
;

procedure_def : procedure_prefix T_LPAREN arg_list T_RPAREN
T_LBRACE stmt_list T_RBRACE

| procedure_prefix T_LPAREN arg_list T_RPAREN
T_LBRACE localvar_list stmt_list T_RBRACE

;

procedure_list : procedure_def
| procedure_list procedure_def
;

procedure_prefix : T_PROCEDURE id
;

localvar_list : localvar_prefix id_list T_SEMI
| localvar_list localvar_prefix id_list T_SEMI
;

localvar_prefix : T_LOCALVAR type_spec
;

stmt_list : /* empty */
| stmt_list
stmt
;

stmt : nac
| pcall
| label
;

nac : opnd_out_list assign_op id opnd_in_list T_SEMI
| opnd_out_list assign_op id T_SEMI
| id opnd_in_list T_SEMI
| id T_SEMI
;

pcall : T_LPAREN opnd_out_list T_RPAREN assign_op id
T_LPAREN opnd_in_list T_RPAREN T_SEMI

| T_LPAREN opnd_out_list T_RPAREN assign_op id T_SEMI
| id T_LPAREN opnd_in_list T_RPAREN T_SEMI
| T_LPAREN T_RPAREN assign_op id T_LPAREN T_RPAREN T_SEMI
;
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assign_op : T_ASSIGN
;

label : id T_COLON
;

opnd_out_list : id_list
;

opnd_in_list : id_list
;

arg_list : /* empty */
| arg_in
| arg_out
| arg_list T_COMMA arg_in
| arg_list T_COMMA arg_out
;

arg_in : T_IN type_spec id
;

arg_out : T_OUT type_spec id
;

id_list : id
| id_list T_COMMA id
;

id : T_ID
;

type_spec : T_ID
;

4.6.2 EBNF grammar

This grammar follows the EBNF notation as used by N. Wirth.

nac_top = {gvar_def} {proc_def}.
gvar_def = "globalvar" anum decl_item_list ";".
proc_def = "procedure" [anum] "(" [arg_list] ")"

"{" [{lvar_decl}] [{stmt}] "}".
stmt = nac | pcall | id ":".
nac = [id_list "<="] anum [id_list] ";".
pcall = ["(" id_list ")" "<="] anum ["(" id_list ")"] ";".
id_list = id {"," id}.
decl_item_list = decl_item {"," decl_item}.
decl_item = (anum | uninitarr | initarr).
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arg_list = arg_decl {"," arg_decl}.
arg_decl = ("in" | "out") anum (anum | uninitarr).
lvar_decl = "localvar" anum decl_item_list ";".
initarr = anum "[" id "]" "=" "{" numer {"," numer} "}".
uninitarr = anum "[" [id] "]".
anum = (letter | "_") {letter | digit}.
id = anum | ["-"] numeric.
numeric = (integer | fxpnum).
fxpnum = [integer] "." integer.
integer = digit {digit}.

4.7 Examples
4.7.1 2D Euclidean distance approximation (eda.nac)

eda.nac is the N-address code (NAC) implementation for a 2D Euclidean distance
approximation algorithm given by the equation: eda = MAX(0.875*x+0.5*y,
x) where x = MAX(|a|,|b|), y = MIN(|a|,|b|).

procedure eda (in s16 in1, in s16 in2, out u16 out1)
{

localvar u16 x, y, t1, t2, t3, t4, t5, t6, t7;
localvar s16 a, b;

S_1:
a <= mov in1;
b <= mov in2;
t1 <= abs a;
t2 <= abs b;
x <= max t1, t2;
y <= min t1, t2;
t3 <= shr x, 3;
t4 <= shr y, 1;
t5 <= sub x, t3;
t6 <= add t4, t5;
t7 <= max t6, x;
out1 <= mov t7;

}

4.7.2 Iterative algorithm for the Fibonacci sequence (fibo.nac)

fibo.nac is the N-address code (NAC) implementation for the iterative version of
Fibonacci series computation.

procedure fibo(in u31 n, out u31 outp)
{

localvar u31 res, x;
localvar u31 f0, f1, f, k;

LL0:
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x <= mov n;
f0 <= ldc 0;
f1 <= ldc 1;
res <= mov f0;
S_EXIT, LL1 <= jmple x, 0;

LL1:
res <= mov f1;
S_EXIT, LL2 <= jmpeq x, 1;

LL2:
k <= ldc 2;
LL3 <= jmpun;

LL3:
f <= add f1, f0;
f0 <= mov f1;
f1 <= mov f;
res <= mov f;
k <= add k, 1;
LL3, S_EXIT <= jmple k, x;

S_EXIT:
outp <= mov res;

}

4.7.3 Sum of array elements (arraysum.nac)

The following computes the sum of the elements of array arr[10], that is the sum of the
first ten primes.

globalvar s32 arr[10]={2,3,5,7,11,13,17,19,23,27};

procedure main (in s32 in1, out s32 out1)
{

localvar s32 D_1963;
localvar s32 i;
localvar s32 sum;

L0001:
sum <= ldc 0;
i <= ldc 0;
D_1221 <= jmpun;

D_1220:
i0 <= mov i;
D_1963 <= load arr, i;
sum <= add sum, D_1963;
i <= add i, 1;
D_1221 <= jmpun;
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D_1221:
D_1220, D_1222 <= jmplt i, in1;

D_1222:
out1 <= mov sum;

}

4.8 Suggested coding style - Limitations
Here follows a list of suggestions for easier programming and code generation in
NAC.

1. At each time, a single translation unit (one NAC-file) can be provided as
input.

2. Non-root procedures cannot have “streaming” outputs (outputs producing
a sequence of values over time).

3. Streaming inputs are syntactically possible but have not yet been thor-
oughly tested.

4. Global variables are arrays. Scalar globals can be emulated as arrays of
size 1.

5. It is probable that a record type will be added in order to support high-
level programming features, such as ANSI C structs, in a future revision
of NAC.

6. Use labels prefixed by S_ such as: S_1, S_2, S_EXIT. This is not
mandatory, just preferred coding style.

And some notes clarifying some issues for potential hardware implementations.

1. An array can be implemented either as a distributed LUT RAM (asyn-
chronous read) or as an embedded memory (synchronous read).

2. The initialization of local array variables of a callee function can only
take effect in a potential hardware implementation when applied by an
addressing-store NAC operation sequence. This means that, initialization
at declaration site, should not be used for localvar arrays for a non-root
procedure.

3. Array input and output arguments of procedures donnot map to embed-
ded memories (block RAMs). This also applies for globalvar and localvar
arrays that are passed to/from procedures.

4. Global variables should be accessed (read or written) only from within
the top-level procedure (root procedure of the program call tree). This
is not a permanent limitation since it is possible to establish access from
any procedure to global variables given that a proper interconnect is avail-
able. Such interconnect could be a multiplexer-based bus. Each procedure
would be assigned a unique ID in order to control the corresponding mul-
tiplexers (for input data, output data and address ports) interfacing to the
global storage. This applies much more easily to single-threaded imple-
mentations of NAC programs.
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5 C coding style
HercuLeS expects that the user resorts to a synthesis-friendly coding style with the
following basic rules:

∙ The main() function should not be included.

∙ Only single-dimensional fixed-size arrays are allowed.

∙ Output arguments of a function are declared as pointers.

∙ Non-root functions can have arrays as arguments but the root (top-level) proce-
dure can’t.

∙ Due to limitations with GIMPLE dumps, global arrays should be declared as
static within the root procedure.

∙ Non-root procedures should not access global arrays.

∙ All functions return void.

∙ goto is not supported.

∙ Structs, unions and all forms of compound data types (except single- dimensional
arrays) are not supported.

6 Limitations of the free web interface
This version comes with certain intentional limitations. Here is a quick list:

∙ The number of NAC code lines are limited to 25. This may not be easily vis-
ible when passing an ANSI C source file to HercuLeS. The examples pack
(small-examples.zip_) provides sample sources that respect this limita-
tion.

∙ The ANSI C backend is not accessible.

∙ Fixed-point arithmetic is not accessible.

∙ Use of a very slow (combinational) divider.

∙ No third-party/user IP integration.

∙ Synthesis script is not generated.

∙ The RTL VHDL code is generated according to the IEEE standard packages.
The synopsys de facto packages (ieee.std_logic_arith instead of
ieee.numeric_std) are not used.

∙ No streaming outputs.

∙ No constant multiplication/division optimizations.

∙ Also, a lot of other optimizations are kept unused.
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7 FSMDs
The FSMD (Finite-State Machine with Datapath) is a model of computation model
which is universal, well-defined and suitable for either data- or control- dominated
applications. The generated hardware architectures from HercuLeS follow an extended
FSMD model as presented in this section.

This section deals with aspects of specification and design of FSMDs, especially
their interface, architecture and organization, as well as communication and integra-
tion issues. The section is wrapped-up with realistic examples of CDFG mappings to
FSMDs, alongside their performance investigation with the help of HDL simulations.

7.1 FSMD overview
An FSMD specification is an upgraded version of the well-known FSM representation
providing the same information as the equivalent CDFG. The main difference is the
introduction of embedded actions within the next state generation logic. An FSMD
specification is timing-aware since it must be decided that each state is executed within
a certain amount of machine cycles. Also the precise RTL semantics of operations
taking place within these cycles must be determined. In this way, an FSMD can provide
an accurate model of an RTL design’s performance as well as serve as a synthesizable
manifestation of the designer’s intent. Depending on the RT-level specification (usually
VHDL or Verilog) it can convey sufficient details for hardware synthesis to a specific
target platform, e.g. Xilinx FPGA devices.

7.1.1 Extended FSMDs

HercuLeS FSMDs follow the established scheme of a Mealy FSM with computational
actions embedded within state logic. In this work, the extended FSMD MoC describing
the hardware architectures supports the following features, the most relevant of which
will be sufficiently described and supported by short examples:

∙ Support of scalar and array input and output ports.

∙ Support of streaming inputs and outputs and allowing mixed types of
input and output ports in the same design block.

∙ Communication with embedded block and distributed LUT memo-
ries.

∙ Design of a latency-insensitive local interface of the FSMD units to
master FSMDs, assuming the FSMD is a locally-interfaced slave.

∙ Design of memory interconnects for the FSMD units.

7.1.2 Interface

The FSMDs of our approach use fully-synchronous conventions and register all their
outputs. The control interface is rather simple, yet can service all possible designs:

∙ clk: signal from external clocking source

∙ reset (rst or arst): synchronous or asynchronous reset, depending
on target specification

∙ ready: the block is ready to accept new input
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∙ valid: asserted when a certain data output port is streamed-out
from the block (generally it is a vector)

∙ done: end of computation for the block

ready signifies only the ability to accept new input (non-streamed) and does not
address the status of an output (streaming or not).

Figure 4: FSMD I/O interface.

Multi-dimensional data ports are feasible based on their equivalent single- dimen-
sional flattened array type definition. Then, port selection is a matter of bitfield extrac-
tion. For instance, data input din is defined as din: in std_logic_vector(M*N-1
downto 0);, where M,“N“ are generics. The flattened vector defines M input ports
of width N. A selection of the form din((i+1)*N-1 downto i*N) is typical for
a for-generate loop in order to synthesize iterative structures.

The following example illustrates an element-wise copy of array b to c without the
use of a local array resource. Each interface array consists of 10 elements. It should
be assumed that the physical content of both arrays lies in distributed LUT RAM, from
which custom connections can be implemented.

Fig. fsmd-arrif-nac illustrates the corresponding function func1. The VHDL
interface of func1 is shown in Fig. fsmd-arrif-vhdl where the the derived array types
b_type and c_type are used for b, c, respectively. The definitions of these types
can be easily devised as aliases to a basic type denoted as: type cdt_type is
array (9 downto 0) of std_logic_vector(31 downto 0);. Then,
the alias for b is: alias b_type is cdt_type;

Array-to-array copy without intermediate storage (NAC).

procedure func1 (in s32 b[10],
out s32 c[10]) {

localvar s32 i, t;
S_1:

i <= ldc 0;
S_2 <= jmpun;

S_2:
S_3, S_EXIT <= jmplt i, 10;

S_3:
t <= load b, i;
c <= store t, i;
i <= add i, 1;
S_2 <= jmpun;

35



S_EXIT:
nop;

}

Array-to-array copy without intermediate storage (VHDL interface).

entity func1 is
port (

clk : in std_logic;
reset : in std_logic;
start : in std_logic;
b : in b_type;
c : out c_type;
done : out std_logic;
ready : out std_logic

);
end func1;

7.2 Architecture and organization
The FSMDs are organized as computations allocated into n+2 states, where n is the
number of required control steps as derived by an operation scheduler. The two over-
head states are the entry (S_ENTRY) and the exit (S_EXIT) states which correspond
to the source and sink nodes of the CDFG of the given procedure, respectively.

Fig. fsmd-minimal shows the absolute minimal example of a compliant FSMD
written in VHDL. The FSMD is described in a two-process style using one process for
the current state logic and another process for a combined description of the next state
and output logic. This code will serve as a running example for better explaining the
basic concepts of the FSMD paradigm.

The example of Fig. fsmd-minimal-vhdl implements the computation of assigning
a constant value to the output port of the FSMD: outp <= ldc 42;. Thus, lines
5--14 declare the interface (entity) for the hardware block, assuming that outp is a
16-bit quantity. The FSMD requires three states. In line 17, a state type enumeration is
defined consisting of types S_ENTRY, S_EXIT and S_1. Line 18 defines the signal
2-tuple for maintaining the state register, while in lines 19--20 the output register is
defined. The current state logic (lines 25--34) performs asynchonous reset to all storage
resources and assigns new contents to both the state and output registers. Next state
and output logic (lines 37--57) decode current_state in order to determine the
necessary actions for the computational states of the FSMD. State S_ENTRY is the
idle state of the FSMD. When the FSMD is driven to this state, it is assumed ready to
accept new input, thus the corresponding status output is raised. When a start prompt
is given externally, the FSMD is activated and in the next cycle, state S_1 is reached.
In S_1 the action of assigning CNST_42 to outp is performed. Finally, when state
S_EXIT is reached, the FSMD declares the end of all computations via done and
returns to its idle state.

It should be noted that this design approach is a rather conservative one. One
possible optimization that can occur in certain cases is the merging of computational
states that immediately prediate the sink state (S_EXIT) with it.

Fig. fsmd-minimal-timediag shows the timing diagram for the minimal design.
As expected, the overall latency for computing a sample is three machine cycles.

Minimal FSMD implementation.
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Minimal FSMD implementation in VHDL.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity minimal is
port (

clk : in std_logic;
reset : in std_logic;
start : in std_logic;
outp : out std_logic_vector(15 downto 0);
done : out std_logic;
ready : out std_logic

);
end minimal;

architecture fsmd of minimal is
type state_type is (S_ENTRY, S_EXIT, S_1);
signal current_state, next_state: state_type;
signal outp_next: std_logic_vector(15 downto 0);
signal outp_reg: std_logic_vector(15 downto 0);
constant CNST_42: std_logic_vector(15 downto 0) :=

"0000000000101010";
begin

-- current state logic
process (clk, reset)
begin

if (reset = ’1’) then
current_state <= S_ENTRY;
outp_reg <= (others => ’0’);

elsif (clk = ’1’ and clk’EVENT) then
current_state <= next_state;
outp_reg <= outp_next;

end if;
end process;

-- next state and output logic
process (current_state, start, outp_reg)
begin

done <= ’0’;
ready <= ’0’;
outp_next <= outp_reg;
case current_state is
when S_ENTRY =>

ready <= ’1’;
if (start = ’1’) then

next_state <= S_1;
else

next_state <= S_ENTRY;
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end if;
when S_1 =>

outp_next <= CNST_42;
next_state <= S_EXIT;

when S_EXIT =>
done <= ’1’;
next_state <= S_ENTRY;

end case;
end process;
outp <= outp_reg;

end fsmd;

Figure 5: Timing diagram for the minimal FSMD.

In certain cases, input registering might be desired. This intent can be made explicit
by copying input port data to an internal register. For the case of the eda algorithm,
a new localvar, a would be introduced to perform the copy as a <= mov in1;.
The VHDL counterpart is given as a_1_next <= in1;, making this data available
through register a_1_reg in the following cycle. For register r, signal r_next
represents the value that is available at the register input, and r_reg the stored data in
the register.

7.2.1 Communication with embedded memories

Array objects can be synthesized to block RAMs in contemporary FPGAs. These em-
bedded memories support fully synchronous read and write operations. A requirement
for asynchronous read mandates the use of memory residing in distributed LUT stor-
age.

In BASIL, the load and store primitives are used for describing read and write
memory access. We will assume a RAM memory model with write enable, and separate
data input (din) and output (dout) sharing a common address port (rwaddr). To
control access to such block, a set of four non-trivial signals is needed: mem_we,
a write enable signal, and the corresponding signals for addressing, data input and
output.

store is the simpler operation of the two. It requires raising mem_we in a given
single-cycle state so that data are stored in memory and made available in the subse-
quent state/machine cycle.

Synchronous load requires the introduction of a waitstate register. This reg-
ister assists in devising a dual-cycle state for performing the load. Fig. fsmd-loadstore-
vhdl illustrates the implementation of a load operation. During the first cycle of STATE_1
the memory block is addressed. In the second cycle, the requested data are made avail-
able through mem_dout and are assigned to register mysignal. This data can be
read from mysignal_reg during STATE_2.
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Wait-state-based communication for loading data from a block RAM.

when STATE_1 =>
mem_addr <= index;
waitstate_next <= not (waitstate_reg);
if (waitstate_reg = ’1’) then

mysignal_next <= mem_dout;
next_state <= STATE_2;

else
next_state <= STATE_1;

end if;
when STATE_2 =>

...

7.2.2 Hierarchical FSMDs

Our extended FSMD concept allows for hierarchical FSMDs defining entire systems
with calling and callee CDFGs. A two-state protocol can be used to describe a proper
communication between such FSMDs. The first state is considered as the preparation
state for the communication, while the latter state actually comprises an evaluation
superstate where the entire computation applied by the callee FSMD is effectively hid-
den.

The calling FSMD performs computations where new values are assigned to *_next
signals and registered values are read from *_reg signals. To avoid the problem of
multiple signal drivers, callee procedure instances produce *_eval data outputs that
can then be connected to register inputs by hardwiring to the *_next signal.

Fig. fsmd-pcall-vhdl illustrates a procedure call to an integer square root evalua-
tion procedure. This procedure uses one input and one output std_logic_vector
operands, both considered to represent integer values. Thus, a procedure call of the
form (m) <= isqrt(x); is implemented by the given code segment.

State-superstate-based communication of a caller and callee procedure instance in
VHDL.

when STATE_1 =>
isqrt_start <= ’1’;
next_state <= SUPERSTATE_2;

when SUPERSTATE_2 =>
if ((isqrt_ready = ’1’) and (isqrt_start = ’0’)) then

m_next <= m_eval;
next_state <= STATE_3;

else
next_state <= SUPERSTATE_2;

end if;
when STATE_3 =>
...
isqrt_0 : entity WORK.isqrt(fsmd)

port map (
clk, reset,
isqrt_start, x_reg, m_eval,
isqrt_done, isqrt_ready

);
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STATE_1 sets up the callee instance. The following state is a superstate where
control is transferred to the component instance of the callee. When the callee instance
terminates its computation, the ready signal is raised. Since the start signal of the
callee is kept low, the generated output data can be transferred to the m register via its
m_next input port. Control then is handed over to state STATE_3.

The callee instance follows the established FSMD interface, reading x_reg data
and producing an exact integer square root in m_eval. Multiple copies of a given
callee are supported by versioning of the component instances.

7.2.3 Steaming ports

ANSI C is the archetypical example of a general-purpose imperative language that
does not support streaming primitives, i.e. it is not possible for someone to express and
process streams solely based on the semantics of such language.

Streaming suits applications with absence of control flow. In a prime factoriza-
tion algorithm (pfactor), a streaming output can be used, outp, to produce successive
factors. The streaming port is accessed based on valid. Thus, outp is accessed
periodically in context of basic block BB4 as shown in fsmd-pfactor-nac.

NAC code for a prime factorization algorithm involving output streaming.

procedure pfactor (in u16 x, out u16 outp) {
localvar u16 i, n, t0;

BB1:
n <= mov x;
i <= ldc 2;
BB2 <= jmpun;

BB2:
BB3, BB_EXIT <= jmple i, n;

BB3:
t0 <= rem n, i;
BB4, BB5 <= jmpeq t0, 0;

BB4:
n <= div n, i;
outp <= mov i;
BB3 <= jmpun;

BB5:
i <= add i, 1;
BB2 <= jmpun;

BB_EXIT:
nop;

}

7.2.4 Operation chaining

Operation chaining assigns dependent SSA operations to a single control step. Sim-
ple means for selective operation chaining involve merging successive ASAP states.
In successive states, intermediate registers are eliminated by wiring assignments to
*_next signals and reusing them in the subsequent chained computation, instead of
reading from the stored *_reg value. To avoid excessive critical paths, a heuristic is
defined for disallowing flow-dependent multiple occurrences of expensive operators in
the same newly defined state.
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In Fig. fsmd-eda-chaining states S_1_3 to S_1_5 comprise intermediate compu-
tations in a merged S_1_1 state.

2D euclidean distance approximation algorithm (eda) without chained computa-
tions.

...
when S_1_3 =>

t3_next <= "000"&x_reg(15 downto 3);
t4_next <= "0"&y_reg(15 downto 1);
next_state <= S_1_4;

when S_1_4 =>
t5_next <= x_reg - t3_reg;
next_state <= S_1_5;

when S_1_5 =>
t6_next <= t4_reg + t5_reg;
next_state <= S_1_6;

2D euclidean distance approximation algorithm (eda) with chained computations.

when S_1_1 =>
...
t3_next <= "000"&x_next(15 downto 3);
t4_next <= "0"&y_next(15 downto 1);
t5_next <= x_next - t3_next;
t6_next <= t4_next + t5_next;
...

8 The HercuLeS GUI

8.1 Introduction
The HercuLeS 1.0 (2013a) distribution includes a graphical user interface (GUI) for
allowing user-friendly access to HercuLeS HLS without the burden of coping with
command-line syntax. The main purpose of the GUI is for the user to control code gen-
eration, simulation and synthesis options via an intuitive scheme. The user sets various
options for the overall process from within the GUI (by interacting with checkbuttons,
radiobuttons, entries, text widgets etc) in order for a shell script to be generated which
will steer these tasks transparently. For running the generated script, a minimal Unix
bash script environment is expected. On Windows, the MinGW and msys distributions
are suggested. On Linux, the required facilities are natively supported in almost any
distributions, including Ubuntu Linux 12.04 LTS.

To summarize, the HercuLeS GUI performs the following tasks:

∙ Allow the user to set various options and to load a C or NAC program file for
processing

∙ Optionally, load a configuration file (which automatically sets all necessary op-
tions)

∙ Generate the HercuLeS run script

∙ Execute the HercuLeS run script

41

http://www.ajaxcompilers.com/technology/hercules-high-level-synthesis
http://www.mingw.org


∙ View results from within an included results browser.

The HercuLeS GUI can be accessed by double-clicking on the icon of the hercules.exe
executable, or by command-line invocation as follows:

./gui/hercules.exe

from within the top-level directory of your HercuLeS installation.
The HercuLeS GUI executable is available on both 32-bit Windows and 32-bit

Linux.

8.2 Overview
When executing hercules.exe, a splashscreen appears for a few seconds, as shown
in Fig. hercules-gui-splashscreen.

Figure 6: The HercuLeS GUI splashscreen.

After the lapse of a few seconds, the basic configuration screen of HercuLeS is
visible. A nominal view of the GUI is shown in Fig. hercules-gui-basicscreen. The
GUI consists of the following:

∙ a dropdown menu with the File, General, Action, Configuration,
Theme (on the left side) and Help (on the right side) submenus.

∙ A set of basic framed controls for setting the simulator (Simulator), wave-
form generation settings (Output waveform format), simulation and syn-
thesis options (Simulation and synthesis options) and miscellaneous
options (Miscellaneous options).

∙ A notebook for controlling high-level synthesis settings in detail, which consists
of four tabs: General, Optimizations, Operation scheduling and
Code generation.
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∙ The read-only console where the standard output is logged in real-time in order
to examine the progress of the current run.

∙ A set of buttons: Run HercuLeS, Results browser, Clear generated
files, Clear console (on the left), and Exit (on the right). Except Run
HercuLeS, all other buttons are disabled at startup.

Figure 7: The initial HercuLeS GUI screen immediately after invocation.

A major element of the HercuLeS GUI which is not readily visible is the Results
browser. This element is activated after a successful run of generating and executing
a HercuLeS run script for a specific C or NAC translation unit.

It should be noted that context-specific balloon help is available for most visible
controls. This kind of help of accessible simply by mouse hovering over the corre-
sponding GUI element.

8.3 Quick-start guide
The fastest and simplest way to use the HercuLeS GUI is a four-step process. Using this
process, the user is able to perform C simulation, VHDL simulation and logic synthesis
on the generated C and VHDL representation of a specified C or NAC program file.

The process is as follows:

1. From the File menu either load a C application (Load C program
file) or a NAC application (Load NAC program file).
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2. From the File menu, press Load HercuLeS configuration and
choose default.config.

3. From the Action menu, press Run HercuLeS (or press the always
visible Run HercuLeS button near the bottom-left corner of the basic
screen layout.

4. When enabled, press Results browser from the bottom-left corner
of the basic screen layout. This will invoke the results browser.

Fig. hercules-gui-quickstart depicts graphically the proposed four-step process for
quickly setting up and processing a program file with HercuLeS.

Figure 8: The four-step quick-start process for using the HercuLeS GUI.
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8.4 The GUI in detail
8.4.1 Dropdown menus

8.4.1.1 File submenu From left to right, the first dropdown menu is File which
covers basic file opening/loading, viewing and editing operations. It is shown in Fig.
hercules-gui-ddmenu-file.

Figure 9: Dropdown menu for file loading, viewing and editing.

HercuLeS can process either C or NAC single-translation-unit programs. The first
set of options deal with handling C program files. Load C file allows for loading
a C file for processing with a .c extension. To view and optionally edit the file, the
selection View/edit current C file is used. To view or edit a C file, the C
file should be already loaded, otherwise a relevant popup message box will appear to
prompt for loading a C file.

The builtin editor/viewer for C files (the same goes for NAC and configuration
files) allows to save your changes but not to rename the loaded file. Fig. hercules-gui-
fileviewer shows a C program file in the file editor/viewer.
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Figure 10: C file editor/viewer in the HercuLeS GUI.

In order to load NAC files, Load NAC file is used. NAC files are expected to
have either an .nac, .asm, or .s extensions, since NAC (N-Address Code) programs
are essentially written in a form of typed-assembly language. Upon selection, the cor-
responding NAC file is automatically loaded for processing.To view and optionally edit
the file, the selection View/edit current NAC file is used. To view or edit a
NAC file, the NAC file should be already loaded, otherwise a relevant popup message
box will appear to prompt for loading a NAC file.

The builtin editor/viewer for NAC files is similar to the one used for editing and
viewing ANSI/ISO C program files.

HercuLeS configuration files allow the user to supply a full set of configuration
options to HercuLeS without interfering with the GUI elements. As a result, load-
ing a translation unit for processing and configuring HercuLeS has a much smaller
turnaround time. Configuration files have the .config suffix; their format is ex-
plained in the corresponding section. The option Load HercuLeS configuration
allows for loading a configuration file. The HercuLeS distribution comes with at least
one predefined configuration file, named default.config.

Configuration files can be saved under different names. This is a useful feature
for the user, and enables the backup and storage of an existing configuration, e.g. one
setup interactively by the user. Save HercuLeS configuration popups the
corresponding dialog for storing the current configuration as a configuration file.

To clear the loaded configuration, Clear HercuLeS configuration is used.
The result is that only minimal settings will be loaded, for instance no HDL simulation
and logic synthesis will be enabled on this setting.

To view and optionally edit the configuration file, the selection View/edit HercuLeS
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configuration file is used. To view or edit a configuration file, the configura-
tion file should be already loaded, otherwise a relevant popup message box will appear
to prompt for loading a configuration file.

The options Stop and Quit allow for ending the current run of HercuLeS abruptly,
and to exit the environment, correspondingly. These options are equivalent to pressing
<Control-C> and <Control-Q> from the keyboard during a HercuLeS session.

8.4.1.2 General submenu The second dropdown menu is General which is a
placeholder for options that can be applied in general to all tools that are invoked by
HercuLeS. Specifically, the nac2cdfg translator from NAC to Graphviz CDFGs and
the cdfg2hdl backend (HDL code generator from Graphviz CDFGs) are affected by
the options of this dropdown menu. This menu is shown in Fig. hercules-gui-ddmenu-
general.

Figure 11: Dropdown menu for general options.

Debug output enables the emission of additional diagnostic information to the
standard output during a HercuLeS script run. This includes printouts of the contents
of various internal data structures of both nac2cdfg and cdfg2hdl.

Quiet mode disables the emission to the standard output of both any additional
diagnostic information as well as other informative messages during a HercuLeS script
run. When enabling this mode, only indications of the start and end of a HercuLeS
script run are generated and depicted in the read-only console.

8.4.1.3 Action submenu The third dropdown menu is Action which provides sev-
eral controls for generating and executing a HercuLeS run script, as well as displaying
the generated result files in a custom browser, optimized for this purpose.

Fig. hercules-gui-ddmenu-action illustrates the corresponding submenu.

Figure 12: Dropdown menu for script action options.

Generate HLS script should be used when the user has already setup either
a C or NAC program file and has loaded or interactively specified a configuration. By
clicking this menubutton, the HercuLeS script for the specified application is gener-
ated. The generated script is a bash shell script which follows the naminb convention
hercules-app.sh, where app is the name of the C or NAC program file. app
should be the same to the name of the top-level procedure in the specified translation
unit.
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Execute HLS script can be used for forcing the execution of the generated
HercuLeS run script. All actions that are performed by the HercuLeS run script (or
HLS script) are logged in real-time to the read-only console. Script execution start is
indicated by the following message:

### HERCULES RUN: STARTED ###

while when script execution completes, the following message is generated to wrap
up the contents of standard output:

### HERCULES RUN: ENDED ###

Following the completion of HercuLeS run script execution, Display results
can be used to load the results browser. The results browser provides a tree-view of
each generated item (file) and allows for easy viewing of the contents of this file, when
applicable in graphical form.

The Run HercuLeS menubutton when selected applies all the three previous ac-
tions in sequence:

∙ Generate HLS script

∙ Execute HLS script

∙ Display results

No further user intervention is required for generating the script for driving the
high-level synthesis process, executing the script, invoking all necessary external tools
(such as the host C compiler, HDL simulators and the Xilinx ISE/XST logic synthesis
tool), and loading the results browser when HLS has completed.

8.4.1.4 Configuration submenu The fourth dropdown menu is Configuration
which provides layouts with entries and choices for configuring external tools and to
provide information on the host system setup.

Fig. hercules-gui-ddmenu-config illustrates the corresponding submenu.

Figure 13: Dropdown menu for environment and external tool configuration options.

HercuLeS environment and tools provides access to Environment
configuration options for the HercuLeS setup (HercuLeS installation path), host
compiler options, HercuLeS frontend options and source optimizer options. Fig. hercules-
gui-ddmenu-config-env shows the default environment configuration options.
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Figure 14: Layout for specifying environment configuration options.

As the host compiler, either gcc or llvm can be used. This choice affects the
host compiler (either GCC or LLVM) used for test data generation and backend C code
simulation. Within the same set of options, the path to the /bin directory of the host
compiler can be set (currently this is left unused; the host compiler is assumed to be in
the system PATH environmental variable). Further, a string specifying the compilation
options passed to the host compiler is specified in Compilation options, how-
ever this is only used with the gimple2nac HercuLeS frontend, since it affects only
this case.

Frontend options provide a choice among to distinct ANSI C frontends,
gimple2nac which uses GIMPLE intermediate dumps generated by gcc in order
to extract the corresponding NAC representation of the application, and irc2nac
which uses a custom translator from IR-C (a low-level C subset, generated by a port
of the LANCE compiler) to NAC. The Frontend path entry should direct to the
directory where the executable of the corresponding frontend is placed.

Source optimizer options specifies the top-level directory of the included
C-to-C source optimizer provided with the HercuLeS distribution. This optimizer is
named txlcopt and is nominally placed in the /txlcopt subdirectory of the Her-
cuLeS distribution.

At the bottom of the Environment configuration layout, several buttons
are located. The OK button is used to close this dialog without further changes. Apply
stores the current settings of the environment configuration. Clear removes all user-
specified settings. Load default reinstantiates the predefined defaults which are
specified in the hercules.ini initialization file. Cancel allows to cancel the cur-
rent operation.

This five-button configuration is used for all configuration layouts that are accessi-
ble through the Configuration dropdown menu.

Xilinx XST/ISE environment provides access to Xilinx XST/ISE configuration
options for the the Xilinx XST/ISE external logic synthesis tool. Fig. hercules-gui-
ddmenu-config-xst shows the default Xilinx XST/ISE configuration options.
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Figure 15: Layout for specifying Xilinx XST/ISE configuration options.

Path to Xilinx ISE is an entry for setting the path to the ISE directory
of the user’s Xilinx ISE/XST installation. A specific FPGA architecture and device
should be specified in order to be picked up by the synthesis process. Thus, the user
should specify a meaningful combination of an FPGA architecture (Choose FPGA
device family) and FPGA device (Choose FPGA device part). The fol-
lowing combinations are the ones that are supported in HercuLeS v1.0.0 (2013a):

∙ spartan3 with xc3s200-ft256-4

∙ virtex4 with xc4vlx25-ff668-10

∙ virtex6 with xc6vlx75t-ff484-1

The corresponding dropdown widget elements allow for the user to add other choices
as well. The dropdown lists can be updated to show all entries by selecting Load
default. This issue appears to be as a bug in the GRIDPLUS widget set which is
used for the configuration layouts.

External tools provides access to External tools configuration
options for third-party external tools e.g. for image visualization. An example of a
default layout for these options is shown in Fig. hercules-gui-ddmenu-config-xtools.

Figure 16: Layout for specifying third-party tool configuration options.

Currently, these options specify the path and name of the image viewer. In addition,
the path to the Graphviz distribution (which should be installed in the user’s machine)
as well as the name of the Graphviz processor (dot) and the preferred Graphviz file
viewer (one option is dotty, which is bundled with all Graphviz distributions; other
choices are also offered by other third parties).

HercuLeS comes on Windows with a free for-commercial-use image viewer named
Imagine. The proper local path to Imagine is thus automatically specified. However,
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the user can bypass this setting by providing the details for the image viewer of prefer-
ence.

8.4.1.5 Theme submenu The fifth dropdown menu is Theme which provides sim-
ple access to all available themes of the host execution platform. Fig. hercules-gui-
ddmenu-theme illustrates the corresponding submenu as it appears in a typical Win-
dows XP installation using ActiveTcl 8.5.14.

Figure 17: Dropdown menu for changing the GUI theme.

In this example, the following themes are accessible:

∙ xpnative

∙ clam

∙ alt

∙ classic

∙ default

∙ winnative.

For a Linux installation, the available set of themes could be possibly much dif-
ferent. In all cases, all available themes will be accessible through this dropdown
submenu.

The following set of figures illustrate the appearance of the basic GUI screen using
the different themes on Windows.
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Figure 18: Basic GUI screen using the xpnative theme on Windows.
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Figure 19: Basic GUI screen using the clam theme on Windows.
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Figure 20: Basic GUI screen using the alt theme on Windows.
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Figure 21: Basic GUI screen using the classic theme on Windows.
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Figure 22: Basic GUI screen using the default theme on Windows.
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Figure 23: Basic GUI screen using the winnative theme on Windows.

8.4.1.6 Help submenu The sixth and last dropdown menu is Help from which the
PDF and HTML version of the HercuLeS reference manual can be accessed, by press-
ing the HTML manual and PDF manual menubuttons respectively. When invoked,
an external HTML browser and PDF viewer (based on the default settings of the host
system) will be called for viewing. When About is pressed the following message is
generated, for version 1.0.0 (2013a) of the HercuLeS distribution.

HercuLeS
Ajax Compilers <info@ajaxcompilers.com>
Developed by Nikolaos Kavvadias
<nkavvadias@ajaxcompilers.com>
Version 1.0.0 (29-Jun-2013)}

Fig. hercules-gui-ddmenu-help illustrates the corresponding submenu.

Figure 24: Dropdown menu for accessing help and about information.
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8.4.2 Framed controls

A set of basic controls are always visible as part of the basic screen layout of the Her-
cuLeS GUI. Fig. hercules-gui-framedcontrols illustrates all the available basic framed
controls.

Figure 25: Controls always visible in the basic screen layout.

8.4.2.1 Simulator control The Simulator control provides a choice between dif-
ferent HDL simulators. Currently, only VHDL simulation is needed since only VHDL
RTL code is generated as a result of the high-level synthesis process. The available
choices for simulators are GHDL (for the GHDL simulator) and Modelsim (for Men-
tor Modelsim). It is expected that both of these simulators (or at least the one that is
intended for use) is already installed on the host system and its executables directory is
declared within the PATH environmental variable.

8.4.2.2 Output waveform format control The Output waveform format
control allows to choose between three choices for generating or not waveform data
from the HDL simulation:

∙ None: do not generate any kind of waveform data

∙ VCD: generate waveform as Value Change Dump (VCD)

∙ GHW: generate GHDL Waveform (GHW) data

VCD and GHW are both supported by recent versions of the GTKwave waveform
viewer.

8.4.2.3 Simulation and synthesis options control The Simulation and synthesis
options control is a set of checkbuttons to enable or disable the generation of corre-
sponding entries in the HercuLeS run script for the following:

∙ running a C simulation using the C backend files generated by a NAC-to-C de-
compilation process (C simulation)

∙ running an HDL simulation using either specified simulator (VHDL simulation)

∙ invoke the Xilinx ISE/XST logic synthesis tool (Logic synthesis)

8.4.2.4 Miscellaneous options The Miscellaneous options control groups
all remaining controls. Currently only Generate test data is available. When
enabled, this checkbutton enables using the host C compiler for generating reference
test input/output data for the application under processing.
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8.4.3 Notebook controls

In order to control in detail the available high-level synthesis settings, a notebook (cur-
rently consisting of four tabs) is always accessible from the basic screen layout of the
HercuLeS GUI.

These tabs organize General, Optimizations, Operation scheduling
and Code generation controls into corresponding categories.

8.4.3.1 General tab From left to right, the first notebook tab is General which
covers general file emission options. It is shown in Fig. hercules-gui-nb-general and
consists of three option groups.

Figure 26: Notebook tab for general high-level synthesis settings.

The first option group, Generate intermediate NAC files, can be used
to enable intermediate dumps after various stages of the HLS compilation process.
Currently on printing intermediate NAC files for each procedure following register
allocation can be specified.

The second option group, Graphical information, can be used for enabling
and disabling of the emission of graphical information at the CDFG (Control-Data Flow
Graph), CFG (Control-Flow Graph) and Call graph level. A CDFG illustates con-
trol and data dependencies between the statements in a NAC procedure. A CFG illus-
trates only the control dependencies at basic block granularity in a procedure. A call
graph depicts the call graph structure of the entire translation unit.

The third option group, Floating-point arithmetic, provides control set-
tings for the support of floating-point arithmetic (Floating-point arithmetic
support). Another checkbutton, Floating-point builtin algorithmic
functions enables the rewriting of NAC programs so that transcendental standard
C library functions (such as calls to sin() and atan()) to be replaced by non-
synthesizable implementations provided by proposed extensions to the VHDL-2008
floating-point arithmetic package.

8.4.3.2 Optimizations tab The second notebook tab is Optimizations which
covers optimization-specific options. All depicted optimizations regard external opti-
mizers that are bundled within the HercuLeS distributions for transforming C, NAC,
or Graphviz representations. The notebook view is shown in Fig. hercules-gui-nb-opt
and consists of three option groups.
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Figure 27: Notebook tab for optimization settings.

This tab basically groups a set of checkbuttons for enabling or disabling specific
optimizations. The first checkbutton, Enable optimizations, enables or dis-
ables the entire group of the following checkbuttons. The supported optimizations are
as follows:

∙ Source-to-source optimizer: The txlcopt optimizer which is a collection of
C-to-C transformation passes developed in the TXL functional programming
language. txlcopt supports arithmetic-oriented, loop-based and generic re-
structuring transformations.

∙ Simple NAC-level optimizations: TXL transformations written for NAC pro-
grams.

∙ Text-based peephole optimizations A collection of optimizations on NAC code
applied with the help of the copt text-based peephole optimizer.

∙ NAC-level if-conversion: If conversion transformation applied on NAC pro-
grams. This transformation cannot be guaranteed to always produce valid code
since it is purely syntax-driven and should only be used with care.

∙ Single constant multiplication optimization: Automatic replacement of single
constant multiplications by optimized multiplierless routines at the NAC level.

∙ Single constant division optimization: Automatic replacement of single constant
divisions by optimized divisionless routines at the NAC level.

∙ Graph-based restructurings: A set of gvpr transformations for use on Graphviz
graphs. gvpr provides a scripting language interface for manipulating graphs
expressed in the Graphviz language similar to awk.

∙ Automatic library IP integration: This option enables the automatic replacement
the uses of specific VHDL operators (e.g. variable multiplications and divisions)
by optimized library IP. HercuLeS takes care of all the required integration and
interconnection effort associated with this task.

8.4.3.3 Operation scheduling tab The third notebook tab is Operation scheduling
which covers operation scheduling and memory synthesis options. Overall, this tab is
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dedicated for the setting of options that control aspects of the generated HDL archi-
tectures. A typical tab view is shown in Fig. hercules-gui-nb-arch and consists of two
option groups.

Figure 28: Notebook tab for architecture-specific high-level synthesis settings.

The first option group, Operation scheduling method, can be used for
selecting one of the provided schedulers for the task of operation scheduling. Cur-
rently Sequential and ASAP scheduling are supported. Sequential schedules
one operation per FSMD state. ASAP is a form of unconstrained scheduling and allows
for mutually-independent operations to be bundled within the same FSMD control step
(state).

The Operation chaining checkbutton enables a heuristic that allows to col-
lapse multiple dependent operations within the same FSMD control step. In some
cases, this technique leads to overcontention of specific FSMD states and subsequently
to lower performance (e.g. reduced clock period due to larger combinational path).
Basic block partitioning contributes a heuristic so that existing basic blocks
are split into smaller ones in order to alleviate for this problem.

The second option group is named Memory synthesis options and is used
for controlling the generation of RAM description that support automatic block RAM
inference. This mandates the use of synchronous read descriptions. Xilinx block
RAM support different read schemes. The corresponding combobox, Block RAM
generation enables the user to select among two different schemes, Read-first
and Read-through. Both schemes are explained in the Xilinx XAPP463 application
note on block RAM usage.

8.4.3.4 Code generation tab The fourth and last notebook tab is Code generation
which covers options that affect code generation in HercuLeS. A view of this tab is
shown in Fig. hercules-gui-nb-cgen and consists of three option groups regarding back-
end code generation, SSA (Static Single Assignment) and register allocation.
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Figure 29: Notebook tab for code generation settings.

The first option group, NAC, C and VHDL code generation, provides check-
buttons for controlling the emission of NAC, backend ANSI C and RTL VHDL code.
NAC and ANSI C backend code are generated by the nac2cdfg tool, while RTL
VHDL is generated by the graph-based cdfg2hdl backend tool of HercuLeS.

This is followed by SSA construction options, a control set for fine-
tuning the generated intermediate representation form by nac2cdfg. Generating SSA
form is mandatory for non-sequential operation scheduling like the ASAP scheme.
Apart from the Enable SSA construction checkbutton, a combobox permits
to choose among two different methods for IR construction, classic minimal SSA
which can be generated by using the Aycock-Horspool technique and Pseudo
SSA which is a form of intrablock variable numbering. The latter is much faster
than the former, however not a true SSA scheme, since the single definition point
property of SSA form is not sustained at interblock scope. Another checkbutton,
Hardware implementation of PHI functions allows for a direct map-
ping of SSA form (which involves so-called PHI functions which are join points for
variable definitions from different control paths) to hardware. The default choice is to
first convert SSA form out-of-SSA. In this case, PHI functions are removed and move
operations must be placed to construct all necessary variable copies.

Register allocation options is a set of controls for setting whether reg-
ister allocation is to be applied. When register allocation is disabled, simply its tem-
porary variable is translated to a hardware register. To perform register allocation the
Enable register allocation checkbutton must be selected. Currently only
linear-scan register allocation (Linear scan) can be selected from the correspond-
ing register allocation method combobox.

8.4.4 Action buttons

A set of five action buttons, Run HercuLeS, Results browser, Clear generated
files, Clear console (on the left), and Exit (on the right) is visible near the
bottom of the basic screen layout. Fig. hercules-gui-basicscreen-actions illustrates the
corresponding controls.

Figure 30: Action buttons situated near the bottom of the basic screen layout.
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The actions performed by Run HercuLeS and Results browser have been
already described. Clear generated files deletes all generated result files
from the working directory of the loaded C or NAC program file. Clear console
deletes all information that has been emitted in the read-only console. Exit forces
the HercuLeS GUI to close. It should be noted that Results browser, Clear
generated files and Clear console are only enabled following the execu-
tion of a HercuLeS script.

8.4.5 Results browser

The HercuLeS GUI comes with a results browser which is invoked after the execution
of a HercuLeS run script has completed. Fig. hercules-gui-resbrowser illustrates an
example view of the results browser layout.

Figure 31: The HercuLeS GUI results browser.

On the left side, the results browser uses a tree viewing GUI element. This tree
viewer loads a file named hlsrestree.tcl from the application’s current (work-
ing) directory. This file provides an automatically-generated GRIDPLUS tree widget
to enable browsing of generated files from the high-level synthesis process.

An example hlsrestree.tcl automatically generated for a Fibonacci series
(fibo) computation application is shown below:

gpset .treebrowser.hlstree {
{/PRGM + "Program: fibo" :folder_blue-22}
{/PRGM/RPTS + "Reports" :folder_graph_white-22}
{/PRGM/RPTS/RESANSIC "ANSI C simulation results" :txt-22}
{/PRGM/RPTS/RESVHDL "VHDL simulation results" :txt-22}
{/PRGM/RPTS/RESXST "XST/ISE synthesis report" :txt-22}
{/PRGM/PROC0 + "Procedure: fibo" :folder_grey-22}
{/PRGM/PROC0/CDFG + "CDFG: fibo" :folder_red-22}
{/PRGM/PROC0/CDFG/DOT "Graphviz dot" :dot-22}
{/PRGM/PROC0/CDFG/PNG "PNG image" :png-22}
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{/PRGM/PROC0/CFG + "CFG: fibo" :folder_orange-22}
{/PRGM/PROC0/CFG/DOT "Graphviz dot" :dot-22}
{/PRGM/PROC0/CFG/PNG "PNG image" :png-22}
{/PRGM/PROC0/NAC + "NAC representation" :folder_green-22}
{/PRGM/PROC0/NAC/FINAL "Optimized NAC : fibo.nac" :nac-22}
{/PRGM/PROC0/NAC/POSTFE "NAC: fibo_ssa.nac" :nac-22}
{/PRGM/PROC0/ANSIC + "ANSI C representation" :folder_olive-22}
{/PRGM/PROC0/ANSIC/FINAL "C backend code for fibo: fibo_nac.c" :ansic-22}
{/PRGM/PROC0/VHDL + "Generated VHDL files for fibo" :folder_magenta-22}
{/PRGM/PROC0/VHDL/RTL "RTL design for fibo" :vhdl-22}
{/PRGM/PROC0/VHDL/CDTPKG "Compound data structures package for fibo" :vhdl-22}
{/PRGM/CG + "Call graph: fibo" :folder_yellow-22}
{/PRGM/CG/DOT "Graphviz dot" :dot-22}
{/PRGM/CG/PNG "PNG image" :png-22}
{/PRGM/GLOBAL + "Global miscellaneous files for fibo" :folder_white-22}
{/PRGM/GLOBAL/HERCSH "Generated HercuLeS bash script for fibo" :bash-22}
{/PRGM/GLOBAL/PROCNMS "Procedure names in fibo" :txt-22}
{/PRGM/GLOBAL/BUILTINS "Black box procedures in fibo" :txt-22}
{/PRGM/GLOBAL/TESTDATA "Reference I/O data for fibo" :txt-22}
{/PRGM/GLOBAL/MAINC "C driver code for fibo: main.c" :ansic-22}
{/PRGM/GLOBAL/MAINH "C header code for fibo: main.h" :ansic_header-22}
{/PRGM/GLOBAL/MK "Makefile for builting C backend code: ansic.mk" :makefile-22}
{/PRGM/GLOBAL/RSIMDO ".do script for VHDL simulation using Modelsim" :txt-22}
{/PRGM/GLOBAL/RSIMSH "Bash script for running the VHDL simulation" :bash-22}
{/PRGM/GLOBAL/XSTSH "Bash script for running logic synthesis with Xilinx XST/ISE" :bash-22}
{/PRGM/VHDL + "Global VHDL files for fibo" :folder_cyan-22}
{/PRGM/VHDL/PKG "Global package for fibo" :vhdl-22}
{/PRGM/VHDL/TB "Testbench for fibo" :vhdl-22}

}

On the right side, the user can view either a textual or a graphical representation
(the latter when appropriate) of the requested information. Currently, the Graphical
view and Statistics views are left unused. It should be noted that when request-
ing a PNG visualization of a graph (e.g. a CDFG, CFG or call graph), an external
image viewer is accessed, the name of and the path to which can be defined via means
of the initialization file or the external tools configuration layout.

The following table summarizes all automatically generated files that are accessible
from the results browser environment. The name of the current application is app.

Path to tree widget Description
/PRGM Top-level folder for app.
/PRGM/REPORTS Reports folder.
/PRGM/REPORTS/DEBUG
/PRGM/REPORTS/RESANSIC
/PRGM/REPORTS/RESVHDL
/PRGM/REPORTS/RESXST

Debug dump.
ANSI C simulation results.
VHDL simulation results.
XST/ISE synthesis report.

/PRGM/PROC$i Top-level folder for procedure proc.
/PRGM/PROC$i/CDFG CDFG folder for proc.
/PRGM/PROC$i/CDFG/DOT
/PRGM/PROC$i/CDFG/PNG

Graphviz dot representation for the CDFG.
PNG image visualization of the Graphviz CDFG.

/PRGM/PROC$i/CFG CFG folder for proc.
/PRGM/PROC$i/CFG/DOT
/PRGM/PROC$i/CFG/PNG

Graphviz dot representation for the CFG.
PNG image visualization for the CFG.

/PRGM/PROC$i/NAC Folder for the NAC representation of proc.
/PRGM/PROC$i/NAC/FINAL
/PRGM/PROC$i/NAC/POSTFE
/PRGM/PROC$i/NAC/RA

Optimized NAC for proc.
NAC following frontend processing for proc.
NAC following register allocation for proc.
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/PRGM/PROC$i/ANSIC Folder for the ANSI C representation of proc.
/PRGM/PROC$i/ANSIC/FINAL C backend code for proc.
/PRGM/PROC$i/VHDL Folder for generated VHDL files of proc.
/PRGM/PROC$i/VHDL/RTL
/PRGM/PROC$i/VHDL/CDTPKG

RTL design for proc.
Compound data structures package for proc.

/PRGM/CG Call graph for app.
/PRGM/CG/DOT
/PRGM/CG/PNG

Graphviz dot representation for the call graph.
PNG image visualization for the call graph.

/PRGM/GLOBAL Global miscellaneous files for app.
/PRGM/GLOBAL/HERCSH
/PRGM/GLOBAL/PROCNMS
/PRGM/GLOBAL/BUILTINS
/PRGM/GLOBAL/TESTDATA
/PRGM/GLOBAL/MAINC
/PRGM/GLOBAL/MAINH
/PRGM/GLOBAL/MK
/PRGM/GLOBAL/RSIMMK
/PRGM/GLOBAL/RSIMDO
/PRGM/GLOBAL/RSIMSH
/PRGM/GLOBAL/XSTSH

Generated HercuLeS bash script for app.
Procedure names in app.
Black box procedures in app.
Reference I/O data for app.
C driver code for app.
C header code for app.
Makefile for builting C backend code.
Makefile for VHDL simulation using GHDL.
.do script for VHDL simulation using Modelsim.
Bash script for running the VHDL simulation.
Bash script for running logic synthesis.

/PRGM/VHDL Folder for global VHDL files of app.
/PRGM/VHDL/PKG
/PRGM/VHDL/TB

Global package for app.
Testbench for app.

8.5 Configuration files
HercuLeS supports user-defined configuration files for fast loading of high-level syn-
thesis settings. A configuration file is expected to have the .config suffix. The
supplied options are organized into four distinct categories, common (options that are
common across all tools), nac2cdfg (passed to the HercuLeS nac2cdfg tool),
cdfg2hdl (passed to the HercuLeS cdfg2hdl tool) and more where all miscel-
laneous options are defined. For the first three categories, these options represent
command-line switches. The last category, more, defines options that are intention-
ally similar to command-line switches but are however passed to the HercuLeS GUI
directly for controlling HercuLeS run script generation.

The general structure of a configuration file is shown below:

start-common
<options>
end-common

start-nac2cdfg
<options>
end-nac2cdfg

start-cdfg2hdl
<options>
end-cdfg2hdl

start-more
<options>
end-more
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An example of a typical configuration file invoking C backend file simulation,
VHDL simulation and XST/ISE synthesis is shown below:

start-common
end-common

start-nac2cdfg
-force-data-types
-ssa
-pseudo-ssa
-emit-nac
-emit-ansic
-emit-cfg
-emit-cg
end-nac2cdfg

start-cdfg2hdl
-sched-asap
-ieee
-vhd2vl
-mpint
-mti
end-cdfg2hdl

start-more
-optimizations
-nacsopt
-nacpeep
-chain
-rsim
-csim
-datagen
-synth
-emit-cdfg
end-more

The list of command-line switches that are passed to the HercuLeS GUI is as fol-
lows:

-optimizations: Enable optimizations.

-srcopt: Source-to-source optimizer.

-nacsopt: Simple NAC-level optimizations.

-nacpeep: Text-based peephole optimizations.

-txlpeep: TXL-based peephole optimizations.

-nacifconv: NAC-level if-conversion.

-kmul: Single constant multiplication optimization.

-kdiv: Single constant division optimization.
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-gvpropt: Graph-based restructurings applied on Graphviz CDFG graphs.

-ipopt: Automatic library IP integration.

-bbpart: Enable basic block partitioning.

-emit-vhdl: Emit RTL VHDL code.

-xst-script: Generate a script for driving Xilinx XST/ISE logic synthesis.

-rsim: Enable VHDL simulation.

-csim: Enable backend C code simulation.

-datagen: Generate reference input/output data for the loaded application.

-emit-cdfg: Generate Graphviz CDFGs and their PNG visualizations for the applica-
tion.

-synth: Enable logic synthesis.

8.6 Initialization file
During startup, the HercuLeS GUI automatically loads a predefined initialization file,
named hercules.ini. This .ini file assigns all required environmental and inter-
nal variables for the proper setup of HercuLeS.

The initialization file is an ASCII text file comprising of a set of entries of the
following form:

variable="rhs-string"

where variable is the name of the environmental or internal use variable to be
set and rhs-string is the string value that is assigned to it.

The following table provides a brief summary of the variables that can be defined
in initialization files.

Name Description
hlstop Top-level installation directory for HercuLeS.
compiler_name Name of the host C compiler.
compiler_path Path to the executables’ directory of the host C compiler.
compiler_opts Command-line options to pass to the host C com-

piler for generating GIMPLE dumps (only for gcc and
gimple2nac).

cfe_name Name of the C frontend for compiling to NAC.
cfe_path Path to the C frontend executable.
srcopt_path Path to the C-to-C optimizer.
xilinx_ise_path Path to the Xilinx ISE directory.
fpga_arch FPGA architecture to be used for logic synthesis.
fpga_part FPGA device to be used for logic synthesis.
graphviz_path Path to the Graphviz installation.
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dotproc_name Name of the Graphviz dot processor (default: dot).
dotviewer_name Name of the Graphviz file viewer (default: dotty).
imgviewer_name Name of the image viewer executable.
imgviewer_path Path to the image viewer executables’ directory.
pdfviewer_name Name of the PDF viewer executable.
pdfviewer_path Path to the PDF viewer executables’ directory.
htmlviewer_name Name of the HTML viewer executable.
htmlviewer_path Path to the HTML viewer executables’ directory.

An example initialization file is shown below:

hlstop="g:/hercules"
compiler_name="gcc"
compiler_path="/usr/local/bin/gcc-4.7.0-install/bin"
compiler_opts="-Wall -O2 -fdump-tree-gimple-raw"
cfe_name="gimple2nac"
cfe_path="g:/hercules/gimple2nac"
srcopt_path="g:/hercules/txlcopt"
xilinx_ise_path="c:/Xilinx/12.3/ISE_DS/ISE"
fpga_arch="virtex6"
fpga_part="xc6vlx75t-ff484-1"
graphviz_path="c:/CompSci/Graphviz2.28"
imgviewer_path="g:/hercules/thirdparty/Imagine"
imgviewer_name="Imagine"
dotproc_name="dot"
dotviewer_name="dotty"
pdfviewer_path="c:/Program\ Files/Adobe/Reader\ 10.0/Reader"
pdfviewer_name="AcroRd32"
htmlviewer_path="c:/Documents\ and\ Settings/nkavvadias/Local\ Settings/Application\ Data/Google/Chrome/Application"
htmlviewer_name="chrome"

68


	Contents
	1   HercuLeS basics
	1.1   Introduction
	1.2   Conceptual flow
	1.3   Overview
	1.4   Quick-start guide to the HercuLeS web interface

	2   More on HercuLeS
	2.1   How it works
	2.2   nac2cdfg
	2.3   cdfg2hdl
	2.3.1   CDFG construction


	3   gimple2nac
	3.1   Introduction
	3.2   Target audience
	3.3   Issues with tagged GIMPLE
	3.3.1   Losing the original semantics of the source program
	3.3.2   Inconsistency in handling labels
	3.3.3   Destroyed interfaces
	3.3.4   Pointer expressions
	3.3.5   Function calls
	3.3.6   Inconsistency in array initialization sequences
	3.3.7   Inconsistency of the tagged GIMPLE format
	3.3.8   Lack of bit-accurate semantics

	3.4   Final notes on GIMPLE

	4   The NAC programming language
	4.1   Introduction
	4.2   NAC instructions
	4.2.1   Fixed-point operators

	4.3   Macroinsructions
	4.4   Structure of a NAC program
	4.5   Data type inference rules
	4.6   NAC grammar
	4.6.1   YACC/bison grammar
	4.6.2   EBNF grammar

	4.7   Examples
	4.7.1   2D Euclidean distance approximation (eda.nac)
	4.7.2   Iterative algorithm for the Fibonacci sequence (fibo.nac)
	4.7.3   Sum of array elements (arraysum.nac)

	4.8   Suggested coding style - Limitations

	5   C coding style
	6   Limitations of the free web interface
	7   FSMDs
	7.1   FSMD overview
	7.1.1   Extended FSMDs
	7.1.2   Interface

	7.2   Architecture and organization
	7.2.1   Communication with embedded memories
	7.2.2   Hierarchical FSMDs
	7.2.3   Steaming ports
	7.2.4   Operation chaining


	8   The HercuLeS GUI
	8.1   Introduction
	8.2   Overview
	8.3   Quick-start guide
	8.4   The GUI in detail
	8.4.1   Dropdown menus
	8.4.2   Framed controls
	8.4.3   Notebook controls
	8.4.4   Action buttons
	8.4.5   Results browser

	8.5   Configuration files
	8.6   Initialization file


