
Source-to-source transformations
Supporting tools and infrastructure

Nikolaos Kavvadias
nkavv@uop.gr

March 31st, 2009

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



Source-to-source transformation (1)

By the term ‘‘source-to-source transformation’’ we refer to
any mechanism that when applied to a SOURCE program, a
functionally equivalent TARGET program is produced
Basic assumptions

SOURCE and TARGET programs submit to the same
programming language semantics
A ‘‘database’’ of the source program is generated by
translating to a form of high-level intermediate
representation (HIR)
The target program is produced by pretty-printing the HIR
view of the source program

Secondary assumptions
Structural information (e.g. program layout, line numbers)
may not be preserved when translating to the HIR form

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



Source-to-source transformation (2)

Potential uses of source-to-source (also termed as
‘‘source-level’’) transformations

Algebraic and other simplifications (e.g. matrix flattening)
Data access improvements for enhancing data locality
Enforcing the use of a data memory hierarchy (data reuse
transformations)
Conversion to a standard (canonicalized) form
Enabling the application of lower level transformations
(closer to the underlying machine model)

High-level view of the source-to-source translation process

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



Pragmatics of a source-to-source transformation
framework

Useful software facilities for implementing a
source-to-source transformation framework

AST builder and walker
AST/HIR query engine
Semantics checker and/or HIR validator
AST2HIR and HIR2AST modules

Z In general, comprehensive frontend facilities would be
extremely useful to build upon

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



An overview of tools and infrastructure

Existing software systems
The C-to-C source code translator
(ftp://theory.lcs.mit.edu/pub/c2c/), now defunct
Memphis tree builder and walker tool
(http://memphis.compilertools.net/index.html)
EDG C/C++ frontend (http://www.edg.com)
TXL (http://www.txl.ca)
The Cetus project (http://cetus.ecn.purdue.edu/)
ROSE compiler infrastructure
(http://www.rosecompiler.org)

. . . or ‘‘Roll Your Own’’ system/infrastructure
Based on extensible text transformation technology: XML +
XSLT (http://www.w3.org/2001/XMLSchema)
Adapt to exactly fit your needs

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



The C-to-C MIT source code translation tool

Features
AST building and type checking from ANSI C
Data flow analysis on the AST
MIT license

Cons
Relatively few built-in transformations
Further development has ceased
Distribution site now defunct (as of late 2005)

Suggestions
Lack of features and support prevent C2C from being a
reliable infrastructure

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



Memphis

Characteristics and features
Intended audience are compiler writers
Provides basic mechanisms for rule-based tree
transformations
Works well with Lex and Yacc
Memphis personal license + GPL

Cons
Lack of a ready-to-use C grammar
No real world examples
Largely unknown to the community
Development site ceased (http://www.combo.org)

Suggestions
Infrastructure is only minimal and not really useful for any
practical use

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



EDG C/C++ frontend

Features
Mature and complete C/C++ frontend
Covers the entire C99 and latest C++ standards
AST construction and a rich set of related data structures
Extensive documentation (∼ 600 pages)
Actively supported by a company (Edison Design Group)
Proprietary open-source license; free for academic research

Cons
Developing user tools requires a significant time investment
No API (which would simplify the development of extensions
and plugins)

Suggestions
Viable choice in case infrastructure development time is
more or less irrelevant

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



TXL

Features
TXL is a functional programming language mainly used for
domain-specific language development
Language primitives for specifying tree rewriting rules
Comes with many frontends (C, C++, Java, Modula-2/3, etc)
Has been used in production environments (source code
transformations for eliminating patterns of code arising Y2K
problems)

Cons
Development seems to be steered by a single person; no real
community being able to contribute
TXL is a narrow-scope language
No previous experience with TXL

Suggestions
Viable choice only if the source transformations involved
could be easily specified by bare bones term rewriting

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



Cetus

Features
Source-to-source C compiler written in Java
Extensive set of compiler passes working on a high-level IR
Supports parallelization techniques
Analyses and transformations

Data dependence analysis
Loop parallelizer
Source program canonicalization
Loop outlining (procedural abstraction of loops)

Modified Artistic License
Cons

Depending on external tools (Java libraries, ANTLR)
Very small (nonexistent?) community outside Purdue Univ.

Suggestions
The scope of this infrastructure seems appropriate
Focuses on parallelism extraction for OpenMP and not loop
restructuring transformations suitable for other purposes
Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



ROSE

Features
A C++ tool for building source-to-source translators
Support for C, C99, UPC, C++, Fortran 77-90/95-2003
Builds upon the EDG frontend (included)
Under active development
Analyses and transformations

AST construction, traversal and querying, CFG construction,
data flow analyses
Predefined loop optimizations: loop interchange, loop fusion,
loop fission, loop splitting, loop unrolling

Revised BSD license
Cons

External dependencies (Java, compiled version of Boost)
It is unclear whether there is an active community yet

Suggestions
Scope and purpose of this infrastructure seem appropriate
Heavy work for an EDG-based ecosystem already done
Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



Custom text transformation engine based on XML

Features
XML is a well-established and mature technology
Provides the means for specifying your own text
manipulation and transformation primitives
Vast community of developers and users

Cons
Development of the infrastructure: constructors, traversals,
querying mechanisms, pretty-printers, dumping to debugging
formats, fundamental analyses and transformations
Development effort cannot be easily estimated

Suggestions
XML is a tool for serious work given that the development
project is closely managed in respect to timeframes and
human resources

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



Conclusion

There exist viable solutions for creating a source-to-source
translation tool fitting our needs

EDG: roll your own analyses and transformations
XML: roll your own and customize to your specific needs
ROSE: open and extensible infrastructure based on the EDG
frontend

The choice of one of these solutions requires taking into
account subjective factors such as:

Communication of ideas, concepts and results to and from
other parties involved
Extensibility of the infrastructure
Preexisting knowledge
Personal preference

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations



References I

TXL homepage. http://www.txl.ca

Memphis tree builder and walker.
http://memphis.compilertools.net/index.html

The C-to-C source code translator.
ftp://theory.lcs.mit.edu/pub/c2c/

The EDG C/C++ frontend. http://www.edg.com

The Cetus project. http://cetus.ecn.purdue.edu

ROSE: A tool for building source-to-source translators.
http://www.rosecompiler.org

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations

http://www.txl.ca
http://memphis.compilertools.net/index.html
ftp://theory.lcs.mit.edu/pub/c2c/
http://www.edg.com
http://cetus.ecn.purdue.edu
http://www.rosecompiler.org


Revision history

v0.1 (30/03/2009): Initial version

Nikolaos Kavvadias nkavv@uop.gr Source-to-source transformations


