
YARDstick - custom processor development
toolset

YARDstick (http://www.nkavvadias.com/yardstick ) is a design automation tool for
custom processor development flows that focuces on the hard part: generating and
evaluating application-specific hardware extensions. YARDstick is a powerful building
block for ASIP (Application-Specific Instruction-set Processor) development, since it
integrates application analysis, ultra-fast algorithms for custom instruction generation
and selection with user-defined compiler intermediate representations. It integrates
retargetable compiler features for the targeted IRs/architectures.

1. Features
Important features of YARDstick are as follows:

∙ retargetable to used-defined IRs by machine description

∙ can be targeted to low-level compiler IRs, assembly-level representations of vir-
tual machines, or assembly code for existing processors

∙ fully parameterized custom instruction generation and selection engine

∙ code selector for multiple-input multiple-output patterns

∙ virtual register assignment for virtual machine targets

∙ an extensive set of backends including:

– assembly code emitter

– C backend

– visualization backend for Graphviz (http://www.graphviz.org)

– visualization backend for VCG (http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.
html) (or aiSee: http://www.absint.com/aisee/)

– an XML format backend amenable to graph rewriting.

YARDstick comes along with a cross-platform GUI written in Tcl/Tk 8.5 (http:
//wiki.tcl.tk).

1

http://www.nkavvadias.com/yardstick
http://www.graphviz.org
http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.html
http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.html
http://www.absint.com/aisee/
http://wiki.tcl.tk
http://wiki.tcl.tk


2. Aim
The ultimate goal of YARDstick is to liberate the designer’s development infrastructure
from compiler and simulator idiosyncrasies. With YARDstick, the ASIP designer is
empowered with the freedom of specifying the target architecture of choice and adding
new implementations of analyses and custom instruction generation/selection methods.

Typically, 2x to 15x speedups for benchmark applications (ANSI C optimized
source code) can be fully automatically obtained by using YARDstick depending on
the target architecture. Speedups are evaluated against a scalar RISC architecture.

3. Detailed look
1. Analysis engines generating both static and dynamic statistics:

∙ Data types

∙ Operation-level statistics

∙ Basic block statistics (ranking)

∙ Performance estimations with/without custom instructions.

2. Generation of CDFGs (Control-Data Flow Graphs).

3. Backend engines:

∙ ANSI C

∙ dot (Graphviz)

∙ VCG (GDL, aiSee)

∙ XML (GGX for the AGG graph rewriting tool): http://www.user.
tu-berlin.de/o.runge/AGG/

∙ Retargetable assembly emitter for entire translation units

∙ CDFG formats for various RTL synthesis tools

4. Custom instruction engines:

∙ Full-parameterized MIMO custom instruction generation algorithm

∙ Fast heuristic

∙ Configurable number of inputs

∙ Configurable number of outputs

5. Custom instruction selection:

∙ Based on priority metrics

6. Graph (and graph-subgraph) isomorphism features for eliminating redun-
dant patterns. Multiple algorithms supported.

7. Visualization of custom instructions, basic blocks, control-flow graphs and
control-data flow graphs (basic block nodes expanded to their constituent
instructions).

2

http://www.user.tu-berlin.de/o.runge/AGG/
http://www.user.tu-berlin.de/o.runge/AGG/


8. Basic retargetable compiler features:

∙ Code selector for MIMO instructions (tested with large cases).

∙ Virtual register assignment (allocation for a VM).

∙ Hard register allocator in the works.

9. Miscellaneous features:

∙ single constant multiplication optimizer

∙ elimination of false data-dependences in assembly-level CDFGs.

∙ beautification options for visualization

∙ interfacing (co-operation) with external tools such as peephole opti-
mizers, profilers, code generators etc.

∙ features related to the custom processor architecture named ByoRISC:
(http://arxiv.org/abs/1403.6632 )

4. Benchmarks
Here is a list of application benchmarks that have been tested with YARDstick:

∙ ADPCM encoder and decoder (typically: 4x speedup)

∙ Video processing kernels: full-search block-matching motion estimation, loga-
rithmic search motion estimation, motion compensation

∙ Image processing kernels: steganography (hide/uncover), edge detection, matrix
multiplication

∙ Cryptographic kernels: crc32, rc5, raiden (7x speedup, 12x for unrolled version)

At the YARDstick homepage (http://www.nkavvadias.com/yardstick/ ) you can find
some additional materials:

∙ A0-poster

∙ 2-page brochure

∙ a more extended presentation on YARDstick

3

http://arxiv.org/abs/1403.6632
http://www.nkavvadias.com/yardstick/
http://www.nkavvadias.com/yardstick/yardstick_poster.pdf
http://www.nkavvadias.com/yardstick/yardstick_brochure.pdf
http://www.nkavvadias.com/yardstick/yardstick_date07_qpres.pdf

