
Vivado HLS vs HercuLeS

I’ve spent these last couple of days to perform head-to-head comparisons of Xilinx
Vivado HLS against HercuLeS on HLS-generated digital circuits (from input C code).

I believe that HercuLeS lived up to the challenge; it is competitive to Vivado HLS.
The reader should take account that:

∙ Both tools have been used (almost) out-of-the-box. Vivado HLS was configured
with no bufg inclusion, and in "out_of_context" mode. These mean that no clock
buffers and I/O pins were routed.

∙ HercuLeS does not (yet) customize the generated HDL in order to fit better spe-
cific architectural features (DSP blocks, embedded SRL units).

∙ Vivado HLS had some TOTAL FAILURES on some relatively simple codes such
as a simple perfect number detector (positive integers equal to the sum of their
divisors), a 1D wavelet code, and easter date calculation. It seems that Vivado
HLS experiences some hard time with integer modulo/remainder. Codes are
provided to anyone interested.

The following table provides a summary of the results:

Benchmark Description Vivado HLS
(VHLS)

HercuLeS Comments

LUTs Regs TET LUTs Regs TET
arraysum Array sum 102 132 26.5 103 63 73.3
bitrev Bit reversal 67 39 72.0 42 40 11.6
edgedet Edge detection 246 130 1636.3 680 361 1606.4 1 BRAM for

VHLS
fibo Fibonacci series 138 131 60.2 137 197 102.7
fir FIR filter 102 52 833.4 217 140 2729.4 Kintex-7
gcd Greatest common

divisor
210 98 35.2 128 93 75.9

icbrt Cubic root
approximation

239 207 260.6 365 201 400.5 Virtex-6

popcount Population count 45 65 19.4 53 102 26.1
sierpinski Sierpinski trian-

gle
88 163 11327 230 200 16225

sieve Prime sieve of Er-
atosthenes

525 595 6108.4 565 523 3869.5 1 BRAM for
VHLS

NOTES:

1



∙ Measurements where obtained for the KC705 development board device: xc7k325t-
ffg900-2

∙ TET is Total Execution Time in ns.

∙ VHLS is a shortened form for Vivado HLS.

∙ Vivado HLS 2013.1 was used.

∙ Bold denotes smaller area and lower execution time.

∙ Italic denotes an inconclusive comparison.

∙ For the cases of edgedet and sieve, VHLS identifies a BRAM; HercuLeS does
not. In these cases, HercuLeS saves a BRAM while VHLS saves on LUTs and
FFs (Registers).

Overall, there are about 30% wins for HercuLeS and ~70% wins for Vivado HLS.
Not too bad for a tool like HercuLeS; producing generic, portable, vendor-independent
code. I estimate that HercuLeS development effort is around 1-5% to Vivado HLS.

I believe that HercuLeS will do much better in the out-of-the-box experience (which
is of high importance in order to draw more software-minded engineers in the game)
in the near future.

Both HercuLeS and Vivado HLS have optimization features (e.g. loop unrolling).
HercuLeS applies optimizations by using a source-to-source C code optimizer. Vivado
HLS mostly resorts to end-user directives. These coding aspects will be taken into
account in a followup comparison; they also yield a much more extensive solution
space.

2


