Implementing 2D cellular automata in plain
hardware (FPGA)

Dear all, it has been some time.

A couple of weeks ago, I had the honor to exhibit at the 2nd Panhellenic meeting on
New Technologies, Robotics and Enterpreneurship (http://robo.teiste.gr). The meeting
took place in Lamia, Greece (where I currently live) and the venue was at a convenient
2 min drive from home camp :)

I want to warmheartedly thank Prof. Panayotis Papazoglou (http://papazoglou.edu.
gr) for the hospitality. He made a great effort in making for the second consecutive
time the ROBO meeting a success!

My first exhibition at a ROBO meeting was based on an all-digital, all-hardware
demo based on 2D cellular automata. The demo was nicknamed ““digital kaleidoscope”
but the work was actually done by 2D automata using the so-called rug rule.

Introduction to 2D cellular automata

In our case, these automata comprise of a two-dimensional matrix composed of iden-
tical cells, the internal state of which can be visualized by assigning it to pixels of a
display through a palette of 256 colors.

According to the rug rule, the following three steps are executed:

* Calculate the sum of the values for the 8 neighbors (Moore neighborhood) of a
given cell C.

* Divide by 8 to get their floored average.

* Calculate the new value for the cell, C’, by adding a small integer increment.
This computation takes place in modulo 256 arithmetic.

Following these simple steps for every cell, the digital kaleidoscope presents an
explosive, chaotic and at the same time, highly interesting behavior.

Implementation

For the implementation, I followed a number of specific steps.

Software exploration

First, a software-based, host-running implementation was examined. I coded this in
plain ANSI C, and used it to produce PPM snapshots for each generation of the au-
tomaton. Then using gifsicle, I had these PPMs converted to nice-looking animated

http://robo.teiste.gr
http://papazoglou.edu.gr
http://papazoglou.edu.gr
http://www.mirekw.com/ca/rullex_udll.html

GIFs. These would allow me very early in the development cycle to have a grasp of
how the hardware demo would potentionally look.

The code makes use of my libpnmio library for PBM/PGM/PPM I/O and is given
here:

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include "pnmio.h"

#define XDIM_DEFAULT 128

#define YDIM_DEFAULT 64

int step=1, incr=1, delay=0, gens=1l;

char imgout_file_name[96];

FILE ximgout_file;

//

int img_xdim=XDIM_DEFAULT, img_ydim=YDIM DEFAULT;
int ximg_temp, ximg_work, ximg_out;

/* decode:
x Decode the RGB encoding of the specified color.
* NOTE: This scheme can only allow for up to 256 distinct colors
* (essentially: R3G3B2).
*/
void decode (int ¢, int xred, int xgreen, int =*blue)

{

int t = c¢;

*red = ((t >> 5) & 0x7) << 5;
*green = ((t >> 2) & 0x7) << 5;
*blue = ((t) & 0x3) << 6;

/* rugca:
* Generic implementation of the rug rule automaton.

*/
void rugca(int xsize, int ysize, int s, int inc, int g, int d)
{

int i, k, %, vy;

int taddr, u, uaddr;

int red, green, blue;

int height=ysize, width=xsize;

int cs;

int sum=0;

int x_offset[8]

int y_offset[8]

{_ll OI 1! lr 1/ Ol_l!_l};
{_11_11_11 O/ 11 1/ ll O};

i = 0;
while (i < g) {

http://github.com/nkkav/libpnmio

printf ("### GENERATION %09d ###\n",

// Print current generation.

if ((1 % s) == 0) {

sprintf (imgout_file_name,

i);

"rugca-%09d.ppm", 1i);

imgout_file = fopen (imgout_file_name, "w");

for (y = 0; y < height;

for (x = 0; x < width;

taddr = y*width+x;

y++)

{

x++) |

decode (img_temp[taddr],
red;

green;
blue;

img_out [3xtaddr+0]
img_out [3*taddr+1]
img_out [3*taddr+2]

}

write_ppm_file (imgout_file,

xsize, ysize, 1, 1, 255);

fclose (imgout_file);

// Calculate next grid state.

for (y = 1; y < height-1;

for (x = 1; x < width-1;

sum = 0;
taddr = yxwidth + x;

y++)

&red,

&green, é&blue);

img_out, imgout_file_name,

{

x++) |

for (k = 0; k < 8; k++) {
uvuaddr = taddr + y_offset[k]xwidth + x_offset[k];

u = img_temp[uaddr]
sum += uj;
}

// Averaging sum.

4

sum = sum >> 3;

// Increment cs, modulo 256.
cs = (sum + 1inc) & OxFF;
img_work[taddr] = cs;

// Copy back current generation.
for (x = 0; x < widthxheight;
img_temp[x] = img_work[x];

// Advance generation.
i++;

/* print_usage:

x++)

{

* Print usage instructions for the "rugca" program.

*/

static void print_usage ()

{

/* main:
* The main

*/

) .

Usage \n")
rugca [optlons]\n"),
\n"

Optlons \n")
-h: Print thlS help.\n");

-xsize <num>: Image width (Default: 128)
-ysize <num>: Image height (Default: 64)
-step <num>: Generate a PPM image every step generations
(Default:

A \D")
. \1’1")

—gens <num>: Total number of CCA generations

—incr <num>: Cell increment (Default:

\n"

1) .\n");

—delay <num>: Delay factor for slowing down the main loop

(Defat

) .\n")

(Defe

For further information, please refer to the website:\n");

http://www.nkavvadias.com\n\n")

routine.

int main(int argc, char x*argv)

{

int

i,

Xy

Yi

// Read input arguments
if (argc < 2) {
print_usage () ;

exit (1) ;
}
for (i = 1; 1 < argc; i++) {
if (strcmp("-h",argv[i]) == 0) {
print_usage () ;
exit (1);
} else if (strcmp("-xsize", argv[i]) == 0) {
if ((i+1l) < argc) {
i++;
img_xdim = atoi (argv[il);
}
} else if (strcmp("-ysize", argv[i]) == 0) {
if ((i+1l) < argc) {
i++;
img_ydim = atoi (argv[il);
}
} else if (strcmp ("-step", argv([i]) == 0) {
if ((i+l) < argc) |

i++;

step = atoi(argv([i]);
}
} else if (strcmp("-gens", argv[i]) == 0) {
if ((i+1) < argc) {
i++;
gens = atoi(argv[il]);
}
} else if (strcmp("-incr", argv([i]) == 0) {
if ((i+l) < argc) {
i++;
incr = atoi(argv([i]);
}
} else if (strcmp("-delay", argv([i]) == 0) {
if ((i+l) < argc) {
i++;
delay = atoi(argv[i]);

/+x Allocate space for image data. */

img_temp = malloc (img_xdim » img_ydim » sizeof (int));
img_work = malloc (img_xdim * img_ydim x sizeof (int));
img_out = malloc (3 » img_xdim % img_ydim * sizeof (int));

for (y = 0; v < img_ydim; y++) {
for (x = 0; x < img_xdim; x++) {
img_temp [y*img_xdim+x] = 0x00;

/+ Perform operations. =/
rugca (img_xdim, img_ydim, step, incr, gens, delay);

/* Deallocate memory. =*/
free (img_temp) ;
free (img_work) ;
free (img_out) ;

return O;

Adapting reference C for high-level synthesis

Following this, the reference C code had to be adapted for high-level synthesis. I
used my own high-level synthesis technology, named HercuLeS HLS: http://www.
nkavvadias.com/hercules/

A detailed manual for HercuLeS can be found here: http://www.nkavvadias.com/
hercules-reference-manual/hercules-refman.pdf

http://www.nkavvadias.com/hercules/
http://www.nkavvadias.com/hercules/
http://www.nkavvadias.com/hercules-reference-manual/hercules-refman.pdf
http://www.nkavvadias.com/hercules-reference-manual/hercules-refman.pdf

So HercuLeS can generate single IP blocks (for single procedures) or entire system
IP (from a given translation unit with a number of procedures). In our case, we will be
generating a single block IP with two streaming outputs,

* ok: is the state of the currently addressed cell

* xy: the address of that cell (linearized from 0 to XDIM*YDIM-1)

This block will then be incorporated in a given system I have developed for im-
age and video synthesis demonstrations. This happens naturally in a plug-and-play
way. Meaning that for custom procedural image/video generation, this system needs
only be updated by the specific finite-state machine with datapath (FSMD) with proper
streaming outputs for the purpose.

The C code is adapted to the following snippet and then it is passed to HercuLeS

for cooking:

#define XSIZE
#define YSIZE
#define XYSIZE

80
60
XSIZExYSIZE

void rugca (int =*ok, int =*xy)

{

unsigned int 1,
unsigned int g=100000000, d=10000000;
unsigned int taddr, uaddr;

unsigned char cs, u, sum, nval;

static unsigned char img_temp[XYSIZE]

j’ kl XI y;

img_work [XYSIZE];

14
static char x_offset(8] = {(-1, O, 1, 1, 1, 0,-1,-1};
static char y_offset(8] = {-1,-1,-1, O, 1, 1, 1, O};
// Default.

unsigned char incr=3;

for (y = 0; y < YSIZE; y++) {

for (x = 0; x < XSIZE; x++) {
img_temp [y*XSIZE+x] = ((x*y) >> 8) & 0x1;
}
}
i = 0;

while (i < g)

{

// Calculate next grid state.

for (y = 1;

y

for (x = 1;

sum = 0;
taddr =

u
sum

< YSIZE-1; y++) {
x < XSIZE-1; x++) {

y*XSIZE + Xx;
for (k = 0; k < 8; k++) {
uaddr =

taddr + y_offset[k]*XSIZE + x_offset[k];
img_temp[uaddr];
sum + u;

// Averaging sum.

sum = sum >> 3;

// Increment cs, modulo 256.
nval = (sum + incr) & OXxFF;
cs = img_temp|[taddr];

*ok = cs;

*xy = taddr;

img_work [taddr] = nval;

// Copy back current generation.
for (x = 0; x < XYSIZE; x++) {

img_temp[x] = img_work[x];
}
j = 0;
while (3 < d) {

Jt++;

// Advance generation.
i++;

Automatically generated VHDL from HercuLeS

HercuLeS now is ready to rumble. Within a few tens of seconds, the VHDL code for
the block is generated. Remember that "humans were not involved in the process :)".
So let’s see what we can do with this automatically-generated code. First, let’s see how
does it look like:

library IEEE;

use WORK.operpack.all;

use WORK.rugca_cdt_pkg.all;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity rugca is

port (
clk : in std_logic;
reset : in std_logic;
start : in std_logic;
mode : in std_logic_vector (3 downto 0);

ok : out std_logic_vector (7 downto 0);
xy : out std_logic_vector (12 downto 0);
valid : out std_logic;
done : out std_logic;
ready : out std_logic

end rugca;

architecture fsmd of rugca is

type state_type is (S_ENTRY, S_EXIT, S_001_001, S_001_002,

5_003_001, S_003_002, S_003_003, S_003_004, sS_003_005,
S_006_001, S_007_001, S_007_002, S_007_003, s_008_001,
5_009_001, S_009_002, S_009_003, S_010_001, s_010_002,
5_011_001, s_011_002, S_011_003, S_011_004, s_011_005,
5_012_001, s_012_002, S_012_003, S_013_001, S_013_002,
S_015_001, s_015_002, S_015_003, S_015_004, s_018_001,
S_020_001, S_021_001, S_022_001, S_023_001, Ss_024_001,
S_027_001, S$_028_001, S_029_001, S_029_002, S_029_003,
5_031_001, S_031_002, S_031_003, S_032_001, s_033_001,
5_034_001, S_034_002, S_034_003, S_034_004, s_035_001,
5_036_001, S_036_002, S_036_003, S_037_001, S_037_002,
S_038_001, S_039_001, S_039_002, S_039_003, s_040_001,
S_041_001, S_041_002, S_042_001);

signal current_state, next_state: state_type;

signal img_temp_we : std_logic;

signal img_temp_addr : std_logic_vector (12 downto 0);
signal img_temp_din : std_logic_vector (7 downto O0);
signal img_temp_dout : std_logic_vector (7 downto 0);
signal img_work_we : std_logic;

signal img_work_addr : std_logic_vector (12 downto 0);
signal img_work_din : std_logic_vector (7 downto 0);
signal img_work_dout : std_logic_vector (7 downto 0);
signal x_offset_we : std_logic;

signal x_offset_addr : std_logic_vector (2 downto O0);
signal x_offset_din : std_logic_vector (7 downto 0);
signal x_offset_dout : std_logic_vector (7 downto 0);
signal y_offset_we : std_logic;

signal y_offset_addr : std_logic_vector (2 downto 0);
signal y_offset_din : std_logic_vector (7 downto 0);
signal y_offset_dout : std_logic_vector (7 downto O0);
signal x_1_next std_logic_vector (31 downto 0);
signal x_1_reqg std_logic_vector (31 downto 0);

signal j_1_next std_logic_vector (31 downto 0);
signal j_1_reg std_logic_vector (31 downto 0);

signal i_1_ next std_logic_vector (31 downto 0);
signal i_1_reg std_logic_vector (31 downto 0);

signal D_1408_1_next : std_logic_vector (31 downto O0);
signal D_1408_1_reg : std_logic_vector (31 downto 0);
signal y_1_next std_logic_vector (31 downto 0);
signal y_1_reg std_logic_vector (31 downto 0);

signal taddr_1_next : std_logic_vector (31 downto 0);
signal taddr_1_reg : std_logic_vector (31 downto 0);
signal D_1417_1 next : std_logic_vector (31 downto 0);
signal D_1417_1_reg : std_logic_vector (31 downto O0);
signal uaddr_1_next : std_logic_vector (31 downto O0);

signal

uvuaddr_1_reg : std_logic_vector (31 downto 0);

S_003_006,
S_008_002,
S_010_003,
S_011_006,
S_013_003,
S_018_002,
S_025_001,
S_030_001,
S_033_002,

S_037_003,

S_001_003, S_(

S_004_(
S_008_(
S_010_(
S_011_(
S_014_(
S_019_(
S_026_(

S_033_(

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

sum_1_next : std_logic_vector (15 downto 0);
sum_1_reg : std_logic_vector (15 downto 0);

k_1_next
k_1_reg

std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);

D_1429_1 next : std_logic_vector (7 downto 0);
D_1429_1 _reg : std_logic_vector (7 downto 0);
D_1412_1_next : std_logic_vector (7 downto 0);
D_1412_1_reg : std_logic_vector (7 downto 0);

g_1l_next std_logic_vector (31 downto 0);
g_1l_reg std_logic_vector (31 downto 0);
d_1_next std_logic_vector (31 downto 0);
d_1_reg std_logic_vector (31 downto 0);
c_1l_next std_logic_vector (7 downto 0);
c_1l_reg std_logic_vector (7 downto 0);
D_1439_1 next : std_logic_vector (7 downto 0);
D_1439_1 reg : std_logic_vector (7 downto 0);
D_1413_1_next : std_logic_vector (7 downto 0);
D_1413_1_reg : std_logic_vector (7 downto 0);
D_1418_1_next : std_logic_vector (7 downto 0);
D_1418_1_reg : std_logic_vector (7 downto 0);
u_l_next std_logic_vector (7 downto 0);
u_l_reg std_logic_vector (7 downto 0);
u_next std_logic_vector (15 downto 0);

u_reg std_logic_vector (15 downto 0);
cs_1_next : std_logic_vector (7 downto 0);
cs_1_reg std_logic_vector (7 downto 0);
X_next std_logic_vector (31 downto 0);

X_reg std_logic_vector (31 downto 0);

Jj_next std_logic_vector (31 downto 0);

Jj_reg std_logic_vector (31 downto 0);

i_next std_logic_vector (31 downto 0);

i_reg std_logic_vector (31 downto 0);

y_next std_logic_vector (31 downto 0);

y_reg std_logic_vector (31 downto 0);

k_next std_logic_vector (31 downto 0);

k_reg std_logic_vector (31 downto O0);
taddr_next : std_logic_vector (31 downto 0);

taddr_re
sum_next

g : std_logic_vector (31 downto 0);
std_logic_vector (15 downto 0);

sum_reg std_logic_vector (15 downto 0);
g_next std_logic_vector (31 downto 0);
g_reg std_logic_vector (31 downto O0);
cs_next std_logic_vector (7 downto 0);
cs_reg std_logic_vector (7 downto 0);
d_next std_logic_vector (31 downto 0);
d_reg std_logic_vector (31 downto O0);
nval_next : std_logic_vector (15 downto 0);
nval_reg std_logic_vector (15 downto 0);

model6_next : std_logic_vector (15 downto 0);
model6_reg : std_logic_vector (15 downto 0);

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

D_1407_1_next
D_1407_1_reg
D_1409_1_next
D_1409_1_reg
D_1415_1_next
D_1415_1_reg
D_1410_1_next
D_1410_1_reg
D_1414_1_next
D_1414_1_reg
D_1422_1_next
D_1422_1_reg
taddr_0_1_ next
taddr_0_1_reg
D_1411_1_next
D_1411_1_reg
D_1416_1_next
D_1416_1_reg
D_1419_1_next
D_1419_1_reg

std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (7 downto 0);
std_logic_vector (7 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);

ok_next
ok_reg
Xy_next
Xy_reg

signal
signal
signal
signal

std_logic_vector (7 downto 0);
std_logic_vector (7 downto 0);

std_logic_vector (12 downto 0);
std_logic_vector (12 downto 0);

signal
signal
signal
signal

constant
constant
constant
constant
constant
constant

serenity_next
serenity_reg
waltstate_next
waitstate_reg
CNST_O
CNST_1
CNST_500000
CNST_2000000
CNST_10000000
CNST_25000000

std_
std_

std_logic;
std_logic;
std_logic;
std_logic;
logic_vector (63 downto 0)
logic_vector (63 downto 0)
std_logic_vector (63 downto 0)
std_logic_vector (63 downto 0)
std_logic_vector (63 downto 0)
std_logic_vector (63 downto 0)

"00000000000000000000C
= "00000000000000000000C

"000000000000¢
"000000000000¢
:= "000000000000¢
"000000000000¢

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_
CNST_

100000000
2 : std_logic_vector (63 downto 0)
254 std_logic_vector (63 downto 0)
3 : std_logic_vector (63 downto 0)
4 : std_logic_vector (63 downto 0)
4799 std_logic_vector (63 downto
5 : std_logic_vector (63 downto 0)
58 std_logic_vector (63 downto 0)
59 std_logic_vector (63 downto 0)
6 : std_logic_vector (63 downto 0)
7 : std_logic_vector (63 downto 0)
78 std_logic_vector (63 downto 0)
79 std_logic_vector (63 downto 0)
8 : std_logic_vector (63 downto 0)
80 std_logic_vector (63 downto 0)
118 std_logic_vector (63 downto 0)

std_logic_vector (63 downto

0)

10

0) "000000000000¢

:= "00000000000000000000¢

"000000000000000000¢

:= "00000000000000000000C
"00000000000000000000C
:= "00000000000000000¢
"00000000000000000000C
"0000000000000000000¢
= "0000000000000000000C
"00000000000000000000C
= "00000000000000000000C
"0000000000000000000C
= "0000000000000000000¢

"0000000000000000¢
"0000000000000000C
"0000000000000000C

constant CNST_119 std_logic_vector (63 downto 0)

constant CNST_158 std_logic_vector (63 downto 0)

constant CNST_159 : std_logic_vector (63 downto 0)

constant CNST_160 : std_logic_vector (63 downto 0)

constant CNST_19199 std_logic_vector (63 downto 0)
begin

—-— current state logic

process (clk, reset)

begin

if (reset = ’1’) then

current_state <= S_ENTRY;
x_1_reg <= (others => '0");
j_1_reg <= (others => ’'0');
i_1_reg <= (others => ’'0");
D_1408_1_reg <= (others => '0');
y_1_reg <= (others => '0");
taddr_1_reg <= (others => ’'0");
D_1417_1_reg <= (others => "07);
uvuaddr_1_reg <= (others => '0’);
sum_1_reg <= (others => ’0");
k_1_reg <= (others => ’'0");
D_1429_1 reg <= (others => 70’);
D_1412_1_reg <= (others => '07);
g_l_reg <= (others => ’0");
d_1_reg <= (others => ’'0');

c_1l _reg <= (others => "07);
D_1439_1 _reg <= (others => 70’);
D_1413_1_reg <= (others => '07);
D_1418_1_reg <= (others => '07);
u_1l_reg <= (others => "0");
u_reg <= (others => ’'0');
cs_1l_reg <= (others => "07);
x_reg <= (others => "0");

j_reg <= (others => '07);

i_reg <= (others => ’'0');

y_reg <= (others => ’'0');

k_reg <= (others => 70');
taddr_reg <= (others => '0");
sum_reg <= (others => "0");
g_reg <= (others => '0");

cs_reg <= (others => "0");

d_reg <= (others => 70');
nval_reg <= (others => ’'0');
model6_reg <= (others => '0");
D_1407_1_reg <= (others => '07);
D_1409_1_reg <= (others => 70');
D_1415_1_reg <= (others => '0');
D_1410_1_reg <= (others => '0');
D_1414_1_reg <= (others => '0’);
D_1422_1_reg <= (others => "0’);

11

"0000000000000000C
"0000000000000000C
"0000000000000000C
"0000000000000000¢
"0000000000000000¢

taddr_0_1_reg <= (others => 70’);
D_1411_1_reg <= (others => '07);
D_1416_1_reg <= (others => 70');
D_1419_1_reg <= (others => '0');

ok_reg <= (others => ’'0');
xy_reg <= (others => ’'0");
serenity_reg <= ’'0';
waitstate_reg <= '0’;
elsif (clk = "1’ and clk’EVENT) then

current_state <= next_state;
x_1_reg <= x_1_next;

j_1_reg <= j_1l_next;

i_1_reg <= i_1_next;
D_1408_1_reg <= D_1408_1_next;
y_1_reg <= y_1_next;
taddr_1_reg <= taddr_1_next;
D_1417_1_reg <= D_1417_1_next;
uaddr_1_reg <= uaddr_1_next;
sum_1_reg <= sum_1_next;
k_1_reg <= k_1_next;

D_1429_1 reg <= D_1429_1_next;
D_1412_1_reg <= D_1412_1_next;
g_1l_reg <= g_l_next;

d_1_reg <= d_1_next;

c_l_reg <= c_1_next;

D_1439_1 reg <= D_1439_1_next;
D_1413_1 reg <= D_1413_1_next;
D_1418_1_reg <= D_1418_1_next;
u_l_reg <= u_l_next;

u_reg <= u_next;

cs_1_reg <= cs_1_next;

X_reg <= x_next;

j_reg <= Jj_next;

i_reg <= i_next;

y_reg <= y_next;

k_reg <= k_next;

taddr_reg <= taddr_next;
sum_reg <= sum_next;

g_reg <= g_next;

cs_reg <= cs_next;

d_reg <= d_next;

nval_reg <= nval_next;
model6_reg <= model6_next;
D_1407_1_reg <= D_1407_1_next;
D_1409_1_reg <= D_1409_1_next;
D_1415_1_reg <= D_1415_1_next;
D_1410_1_reg <= D_1410_1_next;
D_1414_1 _reg <= D_1414_1_next;
D_1422_1_reg <= D_1422_1_next;
taddr_0_1_reg <= taddr_0_1_next;

12

D_1411_1_reg
D_1416_1_reg
D_1419_1_reg

ok_reg <= ok_.
Xy_reg <= Xy_.

serenity_reg

<= D_1411_1_next;
<= D_1416_1_next;
<= D_1419_1_next;
next;
next;
<= serenity_next;

waitstate_reg <= waitstate_next;

end if;
end process;

—-— next state and output logic

process
ok_reg,
Xy_reqg,
serenity_reg,
waitstate_reg,
img_temp_dout,
img_work_dout,
x_offset_dout,
y_offset_dout,
x_1_regqg,
j_1_reg,
i_1_regqg,
D_1408_1_reqg,
y_1_reg,
taddr_1_reqg,
D_1417_1_reqg,
uvaddr_1_reqg,
sum_1_reqg,
k_1_reg,
D_1429_1_reqg,
D_1412_1_reqg,
g_l_reg,
d_1_reg,
c_1l_reqg,
D_1439_1_reqg,
D_1413_1_reqg,
D_1418_1_reqg,

(current_state,

start, mode,

serenity_next,

waitstate_next,

x_1_next,

j_1_next,

i_1_next,
D_1408_1_next,
y_1_next,
taddr_1_next,
D_1417_1_next,
uaddr_1_next,
sum_1_next,
k_1_next,

D_1429_1_ next,
D_1412_1_ next,
g_1l_next,

d_1_next,

c_1_next,

D_1439_1_ next,
D_1413_1_next,
D_1418_1_next,

cs_1_next,

taddr_next,

u_1l_reg, u_l_next,
u_reg, u_next,
cs_1_regqg,

X_reg, X_next,
j_reg, 7j_next,
i_reg, 1i_next,
y_reqg, y_next,
k_reg, k_next,
taddr_reg,
sum_reg, sum_next,
g_reg, g_next,
cs_reg, cs_next,

13

d_reqg,
nval_reg,

model6_re
D_1407_1_
D_1409_1_
D_1415_1_
D_1410_1_
D_1414_1_
D_1422_1_

taddr_0_1_regqg,

D_1411_1_
D_1416_1_
D_1419_1_
)
begin
valid <=
done <= 7/
ready <=
x_1_next
j_1_next
i 1 next
D_1408_1_

d_next,

nval_next,

g,
reg,
reg,
reg,
reg,
reg,
reg,

reg,

reqg,
reg,

IOI;
0r;

next

model6_next,

D_1407_1_next,
D_1409_1_next,
D_1415_1_next,
D_1410_1_next,
D_1414_1_next,
D_1422_1 next,
taddr_0_1_next,
D_1411_1_next,
D_1416_1_next,
D_1419_1_next

<= D_1408_1_reg;

y_1_next <= y_1_reg;
taddr_1_next <= taddr_1_reg;
D_1417_1_next <= D_1417_1_reqg;
uaddr_1_next <= uaddr_1_reg;
sum_1_next <= sum_1_reg;
k_1_next <= k_1_reqg;
D_1429_1_next <= D_1429_1_reg;
D_1412_1_next <= D_1412_1_reg;
g_l_next <= g_1_reg;

d_1_next <= d_1_reg;

c_l_next <= c_1_reqg;

D_1439_1_
D_1413_1
D_1418 1

next
next
next

<= D_1439_1_reg;
<= D_1413_1_reg;
<= D_1418_1_reg;

u_l_next <= u_1_reg;
u_next <= u_reg;
cs_1_next <= cs_1_reqg;

x_next <= x_reg;
j_next <= j_reg;
i_next <= 1i_reg;
y_next <= y_reg;
k_next <= k_reg;

taddr_next <= taddr_reg;
<= sum_reg;
g_next <= g_reg;

sum_next

cs_next

<= cs_reg;

d_next <= d_reg;
nval_next <= nval_reg;

14

model6_next <= model6_reg;
D_1407_1_next <= D_1407_1_reg;
D_1409_1_next <= D_1409_1_reg;
D_1415_1_next <= D_1415_1_reg;
D_1410_1_next <= D_1410_1_reg;
D_1414_1_next <= D_1414_1_reg;
D_1422_1_next <= D_1422_1_reg;
taddr_0_1_next <= taddr_0_1_reg;
D_1411_1_next <= D_1411_1_reg;
D_1416_1 _next <= D_1416_1_reg;
D_1419_1 next <= D_1419_1_ reg;
ok_next <= ok_reg;

Xy_next <= xy_reg;

serenity_next <= serenity_reg;
waitstate_next <= waitstate_reg;
img_temp_we <= ’0’;
img_temp_addr <= (others => '0');

img_temp_din <= (others => ’'0");
img_work_we <= ’0’;

img_work_addr <= (others => '0");
img_work_din <= (others => ’0');

x_offset_we <= "0';
x_offset_addr <= (others => "0’);
Xx_offset_din <= (others => '0');
y_offset_we <= '0';
y_offset_addr <= (others => ’'07);
y_offset_din <= (others => '0’);
case current_state is
when S_ENTRY =>
ready <= '"1';
if (start = '1") then
next_state <= S_001_001;
else
next_state <= S_ENTRY;
end if;
when S_001_001 =>
g_1l_next <= CNST_100000000 (31 downto 0);
d_1_next <= CNST_500000 (31 downto 0);
y_1_next <= CNST_0 (31 downto 0);
next_state <= S_001_002;
when S_001_002 =>
y_next <= y_1 _reg (31 downto 0);
g_next <= g_1_reg (31 downto 0);
d_next <= d_1_reg (31 downto 0);
next_state <= S_001_003;
when S_001_003 =>
next_state <= S_006_001;
when S_002_001 =>
x_1_next <= CNST_O0 (31 downto 0);
next_state <= S_002_002;

15

when S_002_002 =>
x_next <= x_1_reg (31 downto 0);
next_state <= S_002_003;
when S_002_003 =>
next_state <= S5_004_001;
when S_003_001 =>
x_1_next <= std_logic_vector (unsigned(x_reg) + unsigned (CNST_1 (31 <
D_1407_1_next <= mul(y_reg, CNST_80 (31 downto 0), 0", 32);
next_state <= S5_003_002;
when S_003_002 =>
D_1408_1_next <= std_logic_vector (unsigned(D_1407_1_reg) + unsignec
next_state <= S_003_003;
when S_003_003 =>
x_next <= x_1_reg (31 downto 0);
next_state <= S_003_004;
when S_003_004 =>
D_1412_1 _next <= (others => "0'");
next_state <= S_003_005;
when S_003_005 =>
img_temp_we <= "17;
img_temp_addr <= D_1408_1_reg(l2 downto 0);
img_temp_din <= D_1412_1 reg(7 downto 0);
next_state <= S_003_006;
when S_003_006 =>
next_state <= S5_004_001;
when S_004_001 =>
if (x_reg <= CNST_79(31 downto 0)) then
next_state <= S_003_001;
else
next_state <= S_005_001;
end if;
when S_005_001 =>
y_1_next <= std_logic_vector (unsigned(y_reg) + unsigned (CNST_1 (31 c
next_state <= S_005_002;
when S_005_002 =>
y_next <= y_1_reg (31 downto 0);
next_state <= S_005_003;
when S_005_003 =>
next_state <= S_006_001;
when S_006_001 =>
if (y_reg <= CNST_59(31 downto 0)) then
next_state <= S_002_001;
else
next_state <= S_007_001;
end 1if;
when S_007_001 =>
i_1_next <= CNST_0 (31 downto 0);
next_state <= S_007_002;
when S_007_002 =>
i_next <= i_1_reg (31 downto 0);

16

next_state <= S_007_003;
when S_007_003 =>
next_state <= S_040_001;
when S_008_001 =>
y_1 next (31 downto 8) <= (others => '0");
y_1_next (7 downto 0) <= CNST_1(7 downto 0);
next_state <= S_008_002;
when S_008_002 =>
y_next <= y_1_reg (31 downto 0);
next_state <= S5_008_003;
when S_008_003 =>
next_state <= S_032_001;
when S_009_001 =>
x_1_next (31 downto 8) <= (others => ’'0");
x_1_next (7 downto 0) <= CNST_1(7 downto 0);
next_state <= S_009_002;
when S_009_002 =>
x_next <= x_1_reg (31 downto 0);
next_state <= S_009_003;
when S_009_003 =>
next_state <= S_030_001;
when S_010_001 =>
sum_1_next <= CNST_0 (15 downto 0);
k_1 _next <= CNST_O0 (31 downto 0);
D_1407_1_next <= mul(y_reg, CNST_80 (31 downto 0), "0’, 32);
next_state <= S5_010_002;
when S_010_002 =>
taddr_1_next <= std_logic_vector (unsigned(D_1407_1_reg) + unsigned
k_next <= k_1_reg (31 downto 0);
sum_next <= sum_1_reg(l5 downto 0);
next_state <= S5_010_003;
when S_010_003 =>
taddr_next <= taddr_1_reg (31 downto O0);
next_state <= S_010_004;
when S_010_004 =>
next_state <= S5_014_001;
when S_011_001 =>
y_offset_addr <= k_reg(2 downto O0);
x_offset_addr <= k_reg(2 downto 0);
waitstate_next <= not (waitstate_req);
if (waitstate_reg = ’1’) then
D_1413_1_next <= y_offset_dout;
D_1418_1_ next <= x_offset_dout;
next_state <= S_011_002;
else
next_state <= S_011_001;
end if;
when S_011_002 =>
D_1414_1_next (31 downto 8) <= (others => D_1413_1_reg(7));
D_1414_1_next (7 downto 0) <= D_1413_1_reg;

17

D_1419_1_next (31 downto 8) <= (others => D_1418_1_reg(7));
D_1419_1_next (7 downto 0) <= D_1418_1_reg;
next_state <= S_011_003;
when S_011_003 =>
D_1415_1 next <= mul(D_1414_1_reg, CNST_80(31 downto 0), '1’, 32);
next_state <= S_011_004;
when S_011_004 =>
D_1416_1_next (31 downto 0) <= D_1415_1_reg;
next_state <= S_011_005;
when S_011_005 =>
D_1417_1 _next <= std_logic_vector(signed(D_1416_1_reqg) + signed(tac
next_state <= S_011_006;
when S_011_006 =>
uaddr_1_next <= std_logic_vector(signed(D_1417_1_reqg) + signed(D_14
next_state <= S_011_007;
when S_011_007 =>
img_temp_addr <= uaddr_1_reg (12 downto 0);
waitstate_next <= not (waitstate_reqg);
if (waitstate_reg = ’1’) then
u_l_next <= img_temp_dout;
next_state <= S_011_008;
else
next_state <= S_011_007;
end if;
when S_011_008 =>
u_next <= X"00" & u_l_reg(7 downto 0);
next_state <= S_012_001;
when S_012_001 =>
sum_1_next <= std_logic_vector (unsigned(sum_1_reg) + unsigned (u_rec
next_state <= S_012_002;
when S_012_002 =>
sum_next <= sum_1_reg(l5 downto 0);
next_state <= S_013_001;
when S_013_001 =>
k_1_next <= std_logic_vector (unsigned(k_reg) + unsigned (CNST_1 (31 c
next_state <= S5_013_002;
when S_013_002 =>
k_next <= k_1_reg(31] downto 0);
next_state <= S_013_003;
when S_013_003 =>
model6_next <= X"000" & mode (3 downto 0);

sum_next <= "000" & sum_reg(l5 downto 3);

next_state <= S_014_001;
when S_014_001 =>
if (k_reg <= CNST_7(31 downto 0)) then
next_state <= S_011_001;
else
next_state <= S_014a_001;
end if;
when S_014a_001 =>

18

nval_next <= std_logic_vector (unsigned (sum_reg) + unsigned (model6_:
next_state <= S_015_001;
when S_015_001 =>
taddr_0_1_next (31 downto 0) <= taddr_reg;
img_temp_addr <= taddr_reg(l2 downto 0);
waltstate_next <= not (waitstate_req);
if (waitstate_reg = ’1’) then
cs_1_next <= img_temp_dout;
next_state <= S_015_002;
else
next_state <= S_015_001;
end if;
when S_015_002 =>
xy_next <= taddr_0_1_reg(l2 downto 0);
cs_next <= cs_1_reg (7 downto 0);
D_1422_1 next (31 downto 8) <= (others => '0");
D_1422_1_next (7 downto 0) <= cs_1_reg;
serenity_next <= not (serenity_req);
if (serenity_reg = ’'1’) then
valid <= "1’;
next_state <= S_015_003;
else
next_state <= S_015_002;
end if;
when S_015_003 =>
ok_next <= D_1422_1_reg (7 downto 0);
serenity_next <= not (serenity_req);
if (serenity_reg = ’"1’) then
valid <= "1’;
next_state <= S_015_004;
else
next_state <= S_015_003;
end if;
when S_015_004 =>
next_state <= S_018_001;
when S_018_001 =>
img_work_we <= "17;
img_work_addr <= taddr_reg(l2 downto 0);
img_work_din <= nval_reg(7 downto 0);
next_state <= S_019_001;
when S_019_001 =>
next_state <= S5_020_001;
when S_020_001 =>
next_state <= S_021_001;
when S_021_001 =>
next_state <= S_022_001;
when S_022_001 =>
next_state <= S_023_001;
when S_023_001 =>
next_state <= S_024_001;

19

when S_024_001 =>

next_state <= S_025_001;

when S_025_001 =>

next_state <= S5_026_001;

when S_026_001 =>

next_state <= S_027_001;

when S_027_001 =>

next_state <= S_028_001;

when S_028_001 =>

next_state <= S5_029_001;

when S_029_001 =>

x_1_next <= std_logic_vector (unsigned(x_reqg)

next_state <= S_029_002;

when S_029_002 =>

x_next <= x_1_reg (31 downto 0);

next_state <= S_029_003;

when S_029_003 =>

next_state <= S_030_001;

when S_030_001 =>

if (x_reg <= CNST_78 (31 downto 0))

next_state <
else

next_state <
end if;
when S_031_001 =>

y_1_next <= std_logic_vector (unsigned (y_req)

S_010_001;

S_031_001;

next_state <= S_031_002;

when S_031_002 =>

y_next <= y_1_reg (31 downto 0);

next_state <= S_031_003;

when S_031_003 =>

next_state <= S_032_001;

when S_032_001 =>

if (y_reg <= CNST_58(31 downto 0))

next_state <=
else
next_state <=
end if;
when S_033_001 =>

x_1 _next <= CNST_0 (31 downto 0);

S_009_001;

S_033_001;

next_state <= S5_033_002;

when S_033_002 =>

x_next <= x_1_reg (31 downto 0);

next_state <= S_033_003;

when S_033_003 =>

next_state <= S_035_001;

when S_034_001 =>

x_1_next <= std_logic_vector (unsigned (x_req)

then

then

img_work_addr <= x_reg(l2 downto 0);

waitstate_next

<= not

20

(waitstate_req);

+ unsigned (CNST_1 (31 <

+ unsigned (CNST_1 (31 <

+ unsigned (CNST_1 (31 <

if (waitstate_reg = ’1’) then

D_1439_1_next <= img_work_dout;

next_state <=
else
next_state <=
end if;
when S_034_002 =>

S_034_002;

S_034_001;

img_temp_we <= "17;

img_temp_addr <= x_reg (12 downto O0);

img_temp_din <= D_1439_1_ reg(7 downto 0);
next_state <= S_034_003;

when S_034_003 =>

x_next <= x_1_reg (31 downto 0);

next_state <= S_034_004;

when S_034_004 =>

next_state <= S_035_001;

when S_035_001 =>

if (x_reg <= CNST_4799 (31 downto 0))

next_state <
else
next_state
end if;
when S_036_001 =>

AN
Il

j_1_next <= CNST_0(31 downto 0);

S_034_001;

S_036_001;

next_state <= S5_036_002;

when S_036_002 =>

j_next <= j_1_reg (31 downto 0);

next_state <= S_036_003;

when S_036_003 =>

next_state <= S_038_001;

when S_037_001 =>

J_1_next <= std_logic_vector (unsigned(j_req)

next_state <= S_037_002;

when S_037_002 =>

j_next <= j_1_reg (31 downto 0);

next_state <= S_037_003;

when S_037_003 =>

next_state <= S_038_001;

when S_038_001 =>

if (j_reg < d_reg (31 downto 0))

next_state <=
else
next_state <=
end if;
when S_039_001 =>

i_1_next <= std_logic_vector (unsigned (i_req)

S_037_001;

S_039_001;

next_state <= S5_039_002;

when S_039_002 =>

i_next <= i_1_reg (31 downto 0);

next_state <= S_039_003;

21

then

+ unsigned (CNST_1 (31 <

+ unsigned (CNST_1 (31 <

when S_039_003 =>
next_state <= S_040_001;
when S_040_001 =>
if (i_reg < g_reg(31l downto 0)) then
next_state <= S5_008_001;
else
next_state <= S_041_001;
end if;
when S_041_001 =>
next_state <= S_042_001;
when S_042_001 =>
next_state <= S_EXIT;
when S_EXIT =>
done <= "1';
next_state <= S_ENTRY;
when others =>
next_state <= S_ENTRY;
end case;
end process;

ok <= ok_reg;
Xy <= Xy_reg;

img_temp_instance : entity WORK.ram(img_temp)
generic map (

AW => 13,
DW => 8,
NR => 4800
)
port map (
clk => clk,
we => img_temp_we,
en = ’1’,
rwaddr => img_temp_addr,
din => img_temp_din,
dout => img_temp_dout
) i
img_work_instance : entity WORK.ram(img_work)
generic map (
AW => 13,
DW => 8,
NR => 4800
)
port map (
clk => clk,
we => img_work_we,
en = 17,
rwaddr => img_work_addr,
din => img_work_din,

22

dout => img_work_dout

)

x_offset_instance : entity WORK.ram(x_offset)
generic map (

AW => 3,
DW => 8,
NR => 8

)

port map (
clk => clk,
we => x_offset_we,
en = r1’,
rwaddr => x_offset_addr,
din => x_offset_din,
dout => x_offset_dout

)i

y_offset_instance : entity WORK.ram(y_offset)
generic map (

AW => 3,
DW => 8,
NR => 8

)

port map (
clk => clk,
we => y_offset_we,
en => 1,
rwaddr => y_offset_addr,
din => y_offset_din,
dout => y_offset_dout

)

end fsmd;

Wowa! That’s a lot of stuff that went on in HercuLeS. It seems that it did the work.
A self-checking testbench was also automatically generated by HercuLeS but we will
not focus on that in this particular blog post.

Technically, this is a single FSMD with separate processes for current state logic
and next-state/output logic. Datapath actions are embedded within the next-state/output
logic process, no messy code with concurrent assignments (has its pros and cons).
Overall, the code closely follows the FSMD paradigm as presented in Prof. D. Gajski
works and how this scheme was presented in Prof. Pong P. Chu’s books (I own two of
them).

The automatically-generated implementation uses a kind of triple-buffering. We
need a working and a temporary memory for the automaton world, representing gen-
erations n and n+1. In the hardware-oriented version, it is of size 80x60, using 8x8
upscaling, due to the limits of the available internal RAM of the FPGA device (block
RAM), which is around 360 kbits (we will use around 70% of this). For better visual
output, and since we will run computations within the video on timings, we use a sep-

23

http://www.cecs.uci.edu/~gajski/
http://academic.csuohio.edu/chu_p/

arate, third memory, as a video frame buffer. Of course, improvements are possible
against this scheme, e.g. by using line buffers are doing all computations within the
blanking interval durations. It will also be interesting to port this demo to another board
using fast, zero-cycle turnaround SRAM.

About the exhibition

I had a great time with the exhibition, moving away from remote customer interaction
(and their virtual whiplashes :) and meeting a lot of people in person, including school
children, parents, technology afficionados, higher education students, hobbyists, local
industry, teachers and professors.

This is what my demo looked like (so it is true hardware, no hidden computers
running the show, I had to point this out a lot). It appears I was a little tired, but hey
this was towards the end of the day (and I needed refueling).

24

And another shot of the demo:

26

I have uploaded two short videos showcasing the digital kaleidoscope demo at my
YouTube channel:

* Overview of the demo: http://www.youtube.com/watch?v=ahyBUAFcXHw
* Starting sequence: http://www.youtube.com/watch?v=-sxB8§DSznGU

The hardware is using a delay loop in order to let humans visualize the process. The
increment parameter of the automaton is controlled by the four slide switches available
on the specific Digilent board and we can set any value from O to 15.

Technology used for the demo and summary

The digital circuit was designed in the VHDL hardware description language.

To dramatically reduce design time, the behavior of the circuit was first described in
the C programming language. The C program was automatically translated to VHDL
using the HercuLeS high-level synthesis tool.

The resulting description was then synthesized on an FPGA integrated circuit (Xil-
inx XC3S700AN) using the Xilinx ISE/XST logic synthesis environment.

The development board which has been used is the Xilinx Spartan-3AN Starter Kit
by Digilent.

Wrap-up

Folks, I hope you have enjoyed this short (or long) walkthrough through the lost art-
land of Kaveirian (that’s me) high-level synthesis. My next steps would involve pretty
much everything, after all HercuLeS is used for day-by-day, real-life, commercial-
grade work; most frequently for work intended for clients (that most times cannot be
disclosed).

So I am thinking of a more impressive set of demos, like an algorithmically-
generated 3D world which you can explore via a simple keyboard interface, 3D graph-
ics demos (all done in plain hardware), chess engines, obscure IOCCC entries, etc. |
am always collecting ideas across the web, especially "mini-codes" or "tiny-codes" that
could be turned into interesting hardware demos.

28

http://www.youtube.com/watch?v=ahyBUAFcXHw
http://www.youtube.com/watch?v=-sxB8DSznGU

