
HLS tools: Portable generated HDL code is a
must

I will make an argument here: Portable generated HDL from high-level synthesis
must be readable. Manual tracing by the human expert is still invaluable and should
always be there.

There are certain rules that should apply to generating portable, generic and read-
able HDL code:

∙ Maintain program symbols (variables) in the generated code. Temporaries should
keep certain, easy to follow, naming conventions. I do this in HercuLeS HLS:
http://www.nkavvadias.com/hercules/.

∙ Cross-tagging between source level, intermediate representation, graph-based
representation and final HDL code. I’m currently investigating cross-tagging
approaches since HercuLeS should support tracing among source (C w/wo GMP
API for now), IR (N-Address Code: http://www.nkavvadias.com/hercules/nac-refman.
html), low-level IR (Graphviz [http://www.graphviz.org] CDFGs) and RTL VHDL.

∙ Keep control steps (FSM/FSMD states) clear and visible. Consistent naming
conventions can help (to associate states with the corresponding basic blocks or
regions for instance). Again cross-tagging can make this more elegant.

∙ Exploit the casual FSMD feature: do embed datapath actions into the next state
logic code of your FSMD code. Don’t do it Vivado HLS style. The Vivado
HLS approach is an ugly mess. Datapath actions are thrown out in concurrent
code form, and nobody can follow anything. There is more to pay here that the
minor gains in easier resource sharing. X and A people, I’m talking to you: your
backend tools are better than that, not much is lost in optimization if you embed
datapath actions.

That’s for now.

1

http://www.nkavvadias.com/hercules/
http://www.nkavvadias.com/hercules/nac-refman.html
http://www.nkavvadias.com/hercules/nac-refman.html
http://www.graphviz.org

