
HercuLeS: Overview and features

HercuLeS (http://www.nkavvadias.com/hercules/) is an extensible high-level syn-
thesis environment for automatically mapping algorithms to hardware. Essentially,
HercuLeS translates programs in a typed-assembly language named N-Address Code
(NAC) to a collection of Graphviz CDFGs (Control-Data Flow Graphs) which are then
synthesized to vendor-independent self-contained RTL VHDL. HercuLeS is also used
for push-button synthesis of ANSI C code to VHDL.

Overview
The basic steps in the HercuLeS flow are shown in the figure below. C code is passed
to GCC for GIMPLE dump generation, optionally following an external source-level
optimizer. Textual GIMPLE is then processed by gimple2nac; alternatively the user
should directly supply a NAC translation unit or use an owned frontend. Alternative
frontends which are currently WIP are being developed for LLVM (C, C++, Objective-
C) and domain-specific languages (DSLs).

Figure 1: HercuLeS overview.

1

http://www.nkavvadias.com/hercules/
http://www.nkavvadias.com/hercules/nac-refman.html
http://www.graphviz.org
http://gcc.gnu.org
http://llvm.org


Various optimizations can be applied at the NAC level; peephole transformations,
if-conversion, and function call insertion to enable IP integration. Heuristic basic block
partitioning avoids the introduction of excessive critical paths due to operation chain-
ing. The core of HercuLeS comprises of a frontend (nac2cdfg) and a graph-based
backend (cdfg2hdl). nac2cdfg is a translator from NAC to flat CDFGs represented in
Graphviz. cdfg2hdl is the actual synthesis kernel for automatic FSMD hardware from
Graphviz CDFGs to VHDL and self-checking testbench generation.

nac2cdfg is used for parsing, analysis and CDFG extraction from NAC programs.
cdfg2hdl maps CDFGs to extended FSMDs (Finite-State Machines with Datapath). An
ANSI C backend allows for rapid algorithm prototyping and NAC verification. VHDL
code can be simulated with GHDL and Modelsim and synthesized in Xilinx XST and
Vivado Design Suite using automatically generated scripts.

Features
HercuLeS supports a wealth of features. The following graphic provides a visualization
of the most important existing or planned features.

Figure 2: HercuLeS features.

Third-party IP integration
Third-party hardware IP blocks can be seamlessly intergrated to HercuLeS. HercuLeS
allows for automatic IP integration given that the user supplies builtin functionalities.
The HercuLeS flow user is able to import and use an owned IP by the following pro-
cess:

1. Implement IP with expected interface and place in proper subdirectory.

2. Add corresponding entry in a textual database.

2

http://www.graphviz.org
http://ghdl.free.fr
http://www.model.com
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm


3. Use TXL transformations for replacing an operator use by a black-box
function call via a script.

4. A list of black box functions is generated.

5. HercuLeS automatically creates a hierarchical FSMD with the requested
callee(s).

The following graphic illustrates the combined TXL/C approach. The first two
steps apply preprocessing for splitting local variable declarations and removing those
that are redundant or unused. Then, they are localized and subsequently procedure calls
to black-box functions are introduced. These routines are the actual builtin functions. If
the corresponding builtins are listed in the IP database, an interface-compatible VHDL
implementation to HercuLeS caller FSMDs is assumed. Then, cdfg2hdl automatically
handles interface generation and component instantiation in the HDL description for
the caller FSMD description. In addition, simulation and synthesis scripts already
account for the IP HDL files.

Figure 3: Automatic IP integration in HercuLeS.

This approach is also valid for floating-point computation, while both pipelined and
multi-cycle third-party components are supported.

Summary
HercuLeS delivers a contemporary HLS environment that can be comfortably used for
algorithm acceleration by predominantly software-oriented engineers. In this article,
we only covered a high-level overview of how HercuLeS work, walked through exist-
ing and planned features and briefly discussed automatic hardware IP integration.

Useful literature and links
∙ Commercial webpage: http://www.ajaxcompilers.com/technology/hercules-high-level-synthesis

∙ Technical webpage: http://www.nkavvadias.com/hercules/index.html

∙ Technical presentation: http://www.nkavvadias.com/hercules/hlstool_pres.pdf

3

http://www.txl.ca
http://www.ajaxcompilers.com/technology/hercules-high-level-synthesis
http://www.nkavvadias.com/hercules/index.html
http://www.nkavvadias.com/hercules/hlstool_pres.pdf


∙ Reference manual: http://www.ajaxcompilers.com/publications/user-manuals/hercules-refman.
pdf

∙ ASAP 2012 paper: http://www.ajaxcompilers.com/publications/kavvadias_asap2012.
pdf

∙ FPL 2013 paper: http://www.nkavvadias.com/publications/hercules-fpl13-demo.
pdf

∙ PCI 2013 paper: http://www.nkavvadias.com/publications/hercules-pci13.pdf

4

http://www.ajaxcompilers.com/publications/user-manuals/hercules-refman.pdf
http://www.ajaxcompilers.com/publications/user-manuals/hercules-refman.pdf
http://www.ajaxcompilers.com/publications/kavvadias_asap2012.pdf
http://www.ajaxcompilers.com/publications/kavvadias_asap2012.pdf
http://www.nkavvadias.com/publications/hercules-fpl13-demo.pdf
http://www.nkavvadias.com/publications/hercules-fpl13-demo.pdf
http://www.nkavvadias.com/publications/hercules-pci13.pdf

