
Ghosts of HLS past, present and future

This is mostly an adaptation of my position statement as requested by Brian Bailey
Consulting.

∙ The current state of HLS compared to the original expectations for it 10 years
ago

I think that these past few years, a lot of interesting developments occurred in the
HLS field, especially in the programmable/FPGA realm. Essentially, 3rd generation
high-level synthesis tools and environments made a successful, yet belated, entry in
the FPGA market. Here, I’m arbitrarily making a distinction among 1st generation
HLS tools (academic endeavors of the 80’s), 2nd generation HLS tools that made the
ASIC market in the 90’s (e.g. Behavioral Compiler), and the current generation with
usable high-level language frontends, rich optimization portfolios, IP integration and
verification facilities. For these tools, the entry bar has lowered significantly from tens
of thousand USD to about 2-5k USD and this really helps broader adoption. Tech-
nology vendors are not interested in selling their HLS tools but the entire platforms
instead.

On the other side, it is much more difficult for tools of this grade to penetrate the
ASIC market, where design failures are much more costly. There exist both software
and hardware infrastructure issues. Most HLS offers lack the design space exploration
and analysis tools that would allow a safer and faster assessment of QoR on multiple
design points.

∙ Technological changes during the last 10 years. Where does the most potential
lie.

I don’t think that 3rd gen HLS tools encompass significant theoretical advances
compared to what was achievable 10 or 15 years ago in core HLS; most of the theory
(scheduling, resource sharing, retiming) was already there. Changes and improve-
ments are incremental in effect. However, it is this new bunch of tools, that have usable
C/C++/SystemC frontends and target accessible FPGA platforms that start to make a
difference. There is potential for increased competition around MATLAB or Python
to hardware. This market will be increasingly more important. Computationally-wise,
bioinformatics will be big, big data of course, as well as non-Von Neumann comput-
ing, particularly neuromorphic computing for instance to map the mammal brain. Von
Neumann will still be in use for emulating neurocomputers basically as a convenience.

∙ Is HLS a disruptive innovation that will shake the EDA industry? What has
changed?

I think that HLS starts to find its place within the ESL flow. I don’t believe that
the prevailing view is of expecting HLS to be disruptive. It seems that we never really
lacked HLS, but the flow was not there (in this sense I agree with Gabe on EDA). There

1



were a lot of things missing (interfaces, integration, frontends, competitive processes
to ASIC) for HLS to be disruptive in the past.

∙ Estimating market size.

I would say that the estimated market has rised from a few million USD to maybe
30 to 50 million USD. In order to expand the pie, software-oriented engineers must
ride the wagon of HLS, for instance algorithm developers. The majority of these en-
gineers work with MATLAB, Python (or CUDA or OpenCL), so the corresponding
language frontends have to be implemented. FPGA/SoC system engineers are either
already heavily using HLS or considering extending their use of HLS technology. The
easier converts are DSP engineers who clearly see the benefits of HLS in their day-by-
day work, e.g. implementing matrix algebra. However, trusting HLS up to tapeout is
a different story; I still see lots of manual interaction layers following the initial HLS
outcome, primarily for interface modifications, old school optimizations and late adap-
tations (which should be back-propagated effectively by the current HLS tools in the
first place).

A question rises here: what will ultimately replace RTL. If HLS is the answer, then
the market size will first grow to the limits of the current RTL-powered market, and
will then contract since it will have become a commodity. This transition will take
about 12-15 years to complete; highly-customized functions such as device controllers
will be the last stand.

∙ Who benefits from HLS?

Semiconductor companies from the Far East are known to be early, faithful adopters
of HLS. I think that HLS has played a small part in their success, primarily in reducing
time-to-market. A number of IP vendors use either third-party or homebrew, partial,
HLS tools for streamlining the IP. Whenever an IP vendor releases a new non-trivial IP
every one or two weeks, this is a typical sign for heavy HLS use :) Apart these, HLS
should find each way to high-performance computing applications. HPC applications
are most of the cases stencil codes, and the most troublesome part is to exploit and map
task-level or processor-level parallelism. I think that there is much available room in
HLS for HPC scientific computing. So companies offering HPC (either large or small
form factor) design/programming services have lots to benefit from HLS.

∙ How has HLS progressed over the past 10 years?

In the most part, academic ideas are continuously transforming HLS. The key al-
gorithms are established but (for instance) polyhedral frameworks are just starting out
to be used in hardware compilers. Further, putting an intermediate representation at
the heart of HLS is the right idea; frontends, backends, analyses and optimizations are
naturally more easy to extend and maintain. Exposing this representation might also
be of benefit to all parties.

∙ HLS in 10 years from now.

There are still lots of interesting things to happen in HLS:

1. Support very high-level, functional, dynamic, and concurrency-oriented
specifications to HLS (there are multiple attempts towards these ends al-
ready).

2. Transparent preoptimization through intelligent code refactoring.

2



3. The high-quality, extensible, open HLS toolflow: an LLVM for HLS. A
key part is missing at the backend side of the flow; it is very difficult
for open-source projects like VPR/VTR and Torc to keep up with process
advances.

4. HLS as a service: a superoptimizing hardware backend reusing its ac-
quired knowledge for aggressive state optimizations running on the cloud.

5. Better tools at all levels: early assessment, design-space exploration, and
analysis tools in the HLS environment.

6. Transparent development environments: ideally it will not be necessary to
even know that we are using HLS, especially for hybrid, heterogeneous
systems.

In 10-20 years from now, at or past the end of Moore, HLS will be the preferred
choice for squizzing all performance potential out of 5nm or 8nm silicon. These last
processes will be around for a decade or so. Universities will not offer advanced
courses for ASIC/FPGA (no academic interest there); RTL will only be hobbyist, fun
nonetheless. Still, most of the theory will be usable on graphene, carbon nanotube,
organic or bio- processes and in general to whatever else will come in prominence.

3


