
mu0 user manual

Title mu0 (HDL models and programming tools for the educa-
tional MU0 processor)

Author Nikolaos Kavvadias (C) 2010, 2011, 2012, 2013, 2014
Contact nikos@nkavvadias.com
Website http://www.nkavvadias.com
Release Date 19 November 2014
Version 0.0.3
Rev. history
v0.0.3 2014-11-19

Extended the compiler/assembler to automatically produce
ArchC hexadecimal files; add non-interactive mode.

v0.0.2 2014-11-18
Added more test programs/listings; minor documentation
update.

v0.0.1 2014-11-17
Added preliminary version of the ArchC model for the pro-
cessor. This models a byte-addressable version of MU0.

v0.0.0 2014-11-14
Initial release.

1. Introduction
The mu0 is an educational computer taught at the University of Manchester (CS1011_MU0
and [Furber]). It is based on the SSEM computer which was one of the first computers
every built - at the University (and is considered, along with the Harvard Mark 1 to be
the first real computer).

The MU0 is used to illustrate basic programming concepts, and encourages thor-
ough design due to the fact it only has 8 useful instructions (including a halting/stop
instruction), albeit there is available opcode space for an additional eight instructions.

The processor can directly address 4096 words, each 16 bits long. Each word is
capable of storing one fixed length command, which consists of 4 bits of opcode and
12 bits of operand, in all cases except the STOP command which takes no operand.

The only internal register is known as the accumulator (ACC) and this is where all
processing must take place. It is 16 bits long, and is where both inputs to calculations
and results must be stored. In total, an MU0 processor has three registers:

∙ ACC: the accumulator

1

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com
http://www.cs.man.ac.uk/~pjj/cs1011/mu0_l1.html
http://en.wikipedia.org/wiki/Manchester_Small-Scale_Experimental_Machine


∙ PC: the program counter

∙ IR: the instruction register.

The following table illustrates the instruction set of the MU0.

Opcode Instruction Effect Syntax variant (tools)
0000 LDA S ACC = mem[S] ACC<= [S]

0001 STO S mem[S] = ACC ACC>= [S]

0010 ADD S ACC += mem[S] ACC+ [S]

0011 SUB S ACC -= mem[S] ACC- [S]

0100 JMP S pc = S PC<= S

0101 JGE S if ACC>=0 pc = S IF+VE PC<= S

0110 JNE S if ACC!=0 pc = S IF!=0 PC<= S

0111 STP stop STP

This distribution provides the following:

∙ Behavioral VHDL and Verilog HDL models for the mu0.

∙ ArchC functional simulation model for the mu0.

∙ Compiler (assembler) and simulator/debugger for the mu0 based on the original
work of user benjy: http://everything2.com/title/MU0

∙ Scripts for running VHDL simulations with GHDL or Modelsim.

∙ Scripts for running Verilog HDL simulations with Icarus Verilog or Modelsim.

∙ Various test files (*.mu0, *.lst, *.hex).

Future releases will contain adapted synthesizable models, synthesis scripts for Xil-
inx ISE/Vivado and YOSYS and more.

The original documentation as written by benjy can be found in the /doc subdi-
rectory in plain text, HTML and PDF formats.

2. File listing
The mu0 distribution includes the following files:

/mu0 Top-level directory
AUTHORS List of authors.
LICENSE The license agreement for using mu0.
README.rst This file.
README.html HTML version of README.
README.pdf PDF version of README.
VERSION Current version of the mu0 project.
rst2docs.sh Bash script for generating the HTML and PDF versions.
/bench/verilog Verilog HDL testbench directory

2

http://everything2.com/title/MU0
http://clifford.at/yosys/


mu0_tb.v Testbench for exercising the Verilog HDL model.
/bench/vhdl VHDL testbench directory
mu0_tb.vhd Testbench for exercising the VHDL model.
/doc Documentation directory
mu0-compiler-sim.rst Detailed documentation on the MU0 assembler and sim-

ulator (authored by user benjy).
mu0-compiler-sim.html HTML version of the above.
mu0-compiler-sim.pdf PDF version of the above.
rst2docs.sh Bash script for generating the HTML and PDF versions.
/rtl/verilog RTL Verilog source code directory for mu0
mu0_behav.v Behavioral Verilog HDL model.
/rtl/vhdl RTL VHDL source code directory for mu0
mu0_behav.vhd Behavioral VHDL model.
/sim/archc ArchC model files main directory
/sim/archc/src Source directory for the model files
mu0.ac Register and memory model for MU0.
mu0_isa.ac Instruction encodings and assembly formats.
mu0_isa.cpp Instruction behaviors.
/sim/archc/test Tests subdirectory
gen-tests.sh Bash shell script for generating ArchC hexadecimal ap-

plication files for the simulator.
*.hex ArchC hexadecimal application files for testing.
/sim/rtl_sim RTL simulation files directory
/sim/rtl_sim/bin RTL simulation scripts directory
mu0_behav.mk Unix/Cygwin makefile for running a GHDL simulation.
mu0_behav_verilog.do Modelsim do macro for running a Verilog simulation.
mu0_behav_vhdl.do Modelsim do macro for running a VHDL simulation.
/sim/rtl_sim/out Dumps and other useful output from RTL simulation
mu0_behavioral.vcd VCD (Value Change Dump) file from the last simulation

run.
/sim/rtl_sim/run Files for running RTL simulations
ghdl.sh Bash shell script for running a GHDL simulation.
iverilog.sh Bash shell script for running an Icarus Verilog simula-

tion.
load-program.sh Bash shell script for loading a new program to the HDL

processor model (either Verilog HDL or VHDL).
mti-verilog.sh Bash shell script for running a Modelsim simulation of

the Verilog HDL model.
mti-vhdl.sh Bash shell script for running a Modelsim simulation of

the VHDL model.
multiply.lst Hexadecimal listing generated from multiply.mu0

using the mu0 compiler.

3



multiply.mu0 Multiplication test program.
odd_even.lst Hexadecimal listing generated from odd_even.mu0

using the mu0 compiler.
odd_even.mu0 Test program for finding even numbers in a list.
prog.lst The listing file currently visible to the processor models.

Its contents are preloaded to memory before simulation
starts.

test*.lst Sample test listings.
test*.mu0 Sample test programs.
/sim/rtl_sim/run Verilog HDL sources for running RTL simulations
/sim/rtl_sim/vhdl VHDL source files used for running RTL simulations
std_logic_textio.vhd Modified version of a testbench-related package.
/sw Software utilities
Makefile GNU Makefile for building the compiler and debugger.
compile_mu0.c The MU0 compiler (assembler) developed by benjy.
execute_mu0.c The MU0 debugger developed by benjy.

3. Usage

Build the MU0 compiler and debugger
Here we assume that the /mu0 distribution directory is a subdirectory of the working
directory.

$ cd mu0

$ cd sw

$ make clean ; make ; make tidy

Now the compiler (compile_mu0.exe) and debugger/simulator (execute_mu0.exe)
have been generated.

Compile an MU0 application
$ cd ../sim/rtl_sim/run

$ ../../../sw/compile_mu0.exe

A command-prompt appears which looks like this:

COMPILE_MU0 - companion program to EXECUTE_MU0
(C) 1994 Benjy

Please enter source filename >

The user can enter the file name of an existing *.mu0 assembly program such as
multiply.mu0:

Please enter source filename > multiply.mu0

4



In the subsequent prompt, the user should enter the preferred filename for the listing
(hexadecimal file) to be produced:

Please enter destination filename > multiply.lst

By hitting enter again, two-pass assembly will take place and the produced listing
will be available for loading to the processor model(s).

Load the program
$ ./load-program multiply.lst

The above command copies the produced listing, multiply.lst to prog.lst
which is the name of the listing that both the Verilog HDL and VHDL models expect
to read and load to the processor’s memory.

Run Verilog HDL simulation using Icarus Verilog
To run a Verilog HDL simulation using Icarus Verilog, the following script can be used.
As with all simulation scripts, the user will have to edit it in order to provide the correct
path to the tools (Icarus Verilog, GHDL, Modelsim) for his/her setup.

$ ./iverilog.sh

Run Verilog HDL simulation using Modelsim
$ ./mti-verilog.sh

Run VHDL simulation using GHDL
$ ./ghdl.sh

Run VHDL simulation using Modelsim
$ ./mti-vhdl.sh

Visualize simulation waveforms
For both VHDL and Verilog HDL simulations, waveform data are produced in the
VCD format. VCD waveforms can be easily viewed using GTKwave.

$ gtkwave ../out/mu0_behavioral.vcd

4. ArchC model
This is the ArchC (http://www.archc.org) functional simulator model for the MU0 pro-
cessor. For the time being, the architecture is modelled as a byte-addressable, as the
careful reader can notice by examining the ArchC hexadecimal applications files that
can be found in /mu0/sim/archc/tests. If the JGE_IS_JGT preprocessor di-
rective is set, then the behavior of the jump if positive (jge) instruction is altered to

5

http://www.archc.org


convey the meaning of jump if (strictly) larger than zero. There is no concensus about
the behavior of this specific instruction, according to various sources on the MU0 pro-
cessor.

Building the model
To generate the interpreted simulator, the acsim executable is ran:

$ acsim mu0.ac # (create the simulator)
$ make -f Makefile.archc # (compile)
$ ./mu0.x --load=<file-path> [args] # (run an application)

There are two formats recognized for application <file-path>:

∙ ELF binary matching ArchC specifications

∙ hexadecimal text file for ArchC, which has currently been tested.

In order to generate the binary utilities port (binutils port), the acbingen.sh
driver script must be used. This should be called as follows:

$ acbingen.sh -amu0 -i‘pwd‘/../mu0-tools/ mu0.ac

for generating the binutils port executables. This includes the following tools:

∙ addr2line

∙ ar

∙ as

∙ c++filt

∙ ld

∙ nm

∙ objcopy

∙ objdump

∙ ranlib

∙ readelf

∙ size

∙ strings

∙ strip

This feature has not yet been tested for the mu0 model.

Alternative assembly syntax
The ArchC-based tools support a number of alternative assembly instruction syntaxes
for mu0. The following table summarizes the differences between the syntax varia-
tions.

6



Instruction Alternative syntax
lda lda imm

sto sto imm

add add imm

sub sub imm

jmp jmp imm

jge jge imm

jne jne imm

stp stp halt

5. Prerequisites
∙ Standard UNIX-based tools (tested with gcc-4.8.1 on MinGW/x86) [optional if

you use Modelsim].

– make

– bash (shell)

For this reason, MinGW (http://www.mingw.org) or Cygwin (http://sources.redhat.
com/cygwin) are suggested, since POSIX emulation environments of sufficient
completeness.

∙ Icarus Verilog simulator (http://iverilog.icarus.com/). The Windows version can
be downloaded from: http://bleyer.org/icarus/

∙ GHDL simulator (http://ghdl.free.fr) [optional if you use Modelsim]. Provides
the ghdl executable (has several Windows versions, with 0.29.1 and 0.31 being
the latest). It also installs GTKwave on Windows. Note that the latest version
(0.31) from http://sourceforge.net/project/ghdl-updates/ does not include GTK-
wave.

∙ Alternatively, a commercial simulator like Mentor Modelsim (http://www.model.
com) can be used.

∙ ArchC (http://www.archc.org) installation (tested on Cygwin/Win7-64bit and
Linux) [required only for using the ArchC model]

6. Contact
You may contact me at:

Nikolaos Kavvadias <nikos@nkavvadias.com>
Independent Consultant
http://www.nkavvadias.com
Kornarou 12 Rd,
35100 Lamia, Fthiotis
Greece

7

http://www.mingw.org
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://iverilog.icarus.com/
http://bleyer.org/icarus/
http://ghdl.free.fr
http://sourceforge.net/project/ghdl-updates/
http://www.model.com
http://www.model.com
http://www.archc.org
mailto:nikos@nkavvadias.com
http://www.nkavvadias.com


References

[Furber] Stephen Furber, ARM System-on-chip Architecture, 2nd edition, Pearson Ed-
ucation Limited, 2000.

8


