loopgen user manual

loopgen

Title loopgen (IP core collection)
Author Nikolaos Kavvadias (C) 2004-2013
Contact nikos @nkavvadias.com
Website http://www.nkavvadias.com
Release Date 13 June 2013
Version 1.0.0
Rev. history
v1.0.0 13-06-2013

First public release.

1. Introduction

The loopgen IP collection provides fast hardware architectures for implementing
nested loop structures. The collection comprises of three different architectures (vari-
ants) adhering to a common I/O interface, namely hw1lu, a mixed-level structural/RTL
architecture, i xgenb, a behavioral-level and i xgenr, a high-performance, pure RTL
description of a more generalized form of the architecture.

Hardware looping architectures have potential uses for data-intensive processing in
embedded systems. The implemented architectures are able to provide all necessary
control means for executing perfect loop nests without any cycle overhead for updating
the iteration vector. Actually, successive last iterations of nested loops are performed
in a single cycle. Such architectures can be used for implementing zero-cycle overhead
loop controllers for perfect loop nests operating on multi-dimensional data.

The following sections provide details on the contents of the delivered IP cores,
which include all necessary materials such as source files and scripts for RTL simula-
tion and logic synthesis.

Reference documentation for LOOPGEN can be found in the /doc subdirectory
in plain text, HTML and PDF form.

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com

2. Functional description

LOOPGEN is implemented as three distinct variants following the exact same inter-
face (hwlu, ixgenb, ixgenr). All variants support the following two generics for
hardware configuration:

e NLP: number of supported hardware loops,
e DW: datapath bitwidth.

The following table summarizes the LOOPGEN default interface.

Port Width Direction Description

CLK 1 I Clock input

RESET 1 I Reset input

INNERLOOP- | 1 I Termination flag for the data computations

_END occurring during an iteration of the inner-
most loop.

LOOP_COUNT | NLP*DW, 1 Loop bound values for each loop

STRIDE NLP*DW| 1 Stride values for each loop

INDEX NLP*DW,| O Index register output for each loop

DONE 1 o Termination flag for the entire loop structure.

The corresponding interface block diagram is shown below. Each core uses a sin-
gle external clock source, connected to signal CLK. It can be reset with the active high
signal RESET. The signal INNERLOOP_END indicates that the innermost loop com-
putations for the current iteration vector have completed and a new iteration vector
must be computed. Data inputs LOOP_COUNT and STRIDE provide the loop bound
value and stride (step), correspondingly for each loop, in the form of long, concate-
nated, vectors. To address the LOOP_COUNT entry for the i-th loop, the following
field selection should be used: 1oop_count (i*DW-1 downto (i-1)«DW), as-
suming that the loops are enumerated from 1 to NLP, with the NLP-th loop being the
innermost one. The iteration vector is represented by the INDEX output vector, which
again follows the conventions of LOOP_COUNT and STRIDE. DONE signifies the end
of the computation for the entire loop structure.

CLK —>»

RESET —» LOOPGEN —» DONE
INNERLOOP_END —»

(HWLU,
R gy Moeeow

STRIDE[NLP*DW1:0] —»

Figure 1: 1oopgen /O interface.

The default interface is supported by the parametric testbench for the purpose of
simulations. It is possible to use the provided software tool (specifically gen_hwlu
to generate a LOOPGEN core with an interface where LOOP_COUNT, STRIDE and

INDEX are split into corresponding vectors of size DW. However, this version of hwlu
is not supported by the testbench.

It is useful to mention that the LOOPGEN IP can be viewed as implementing the
following C-like looping structure in hardware:

for (il = 0; il < loop_countl; il += stridel) {
for (i2 = 0; 12 < loop_count2; i2 += stride2) {

for (inlp = 0; inlp < loop_countnlp; inlp += striden)
// innermost loop computations

}

All variants implement the same cycle timing. A new iteration vector can be calcu-
lated every single clock cycle.

3. Architecture

3.1 HWLU

The HWLU architecture can be configured for any number of loop nesting levels to
eliminate branch instruction overhead for loop increments. The user can regenerate
the corresponding files for the top-level module (hwlu) and the priority encoder used
internally (prenc) for a different number of supported loops.

The following figure shows the block diagram of the hardware looping architecture.

loop_countt loap_count2 loop_countn
reset

3 I }
cmpge CMpge | cm————- cmpge
J
LEEI A20(2) —m e 1300
done
—>»
innerioop_end g priority encoder reset reset_vet_ix
{prenc) control
reset_vct
incli1) I * incl{2 * } inclfn) * ‘
index_inc index_int | ccceee- index_inc
mdgﬂﬂ dJ
Tndex 2+1

v v v
index 1 index 2 indexcn indexrn+1

Figure 2: Block diagram of the HWLU.

Loop index values are produced every clock cycle based on the corresponding loop
bound and stride values for each level of nesting. The initial value for the loop indices
is provided by a reset mechanism, and the maximum value is equal to the loop bound
minus one. In the following cycle of a last iteration for a specific loop, the loop index
is reset to its initial value.

The priority encoder performs the actual control logic in context of the hwlu and
operates asynchronously by detecting the magnitude comparator (cmpge) outputs (bit-
wise flag signals) and an external signal preassumably from the datapath (innerloop_end).
This signal is produced by the corresponding hardware module that performs the inner
loop operations, which may be a dedicated accelerator engine.

If a specific loop is terminating, this loop as well as all its inner loops are reset
during the subsequent cycle. For a non-outermost loop, its immediate parent loop
index is incremented. In case that none of the loops is terminating, then the inner loop
is incremented. Signal innerloop_end guards this increment operation.

Finally, signal done designates that processing in the entire loop structure has
terminated.

3.2 IXGENB

The ixgenb architecture variant is based on a hardware algorithm for zero-overhead
looping on perfect nests. This algorithm automates the design of compact and efficient
hardware looping units that can be implemented as fully synchronous hardware. The
looping units of this type are hereafter termed as index generators’, and abbreviated to
i{IXGEN} which is also used when referring to the algorithm. These units can be also
viewed as tuple generators, covering the entire space of “d‘-tuples for d-dimensional
data processing.

The first form of the algorithm, named IXGENB, is directly applicable in context
of a behavioral HDL model for any number of loops. The pseudocode semantics for
implementing these mechanisms can be found below.

local temp_index: temporary copy of index.
parameter NLP: number of supported loops.
begin

if innerloop_end == 1 then

for i in 1 to NLP loop
if temp_index[i] + stride[i] < loop_count[i] then
if i greater than 1 then
for j in 0 to i-1 loop
temp_index[]j] = zero;
endfor;
endif
temp_index[i] = temp_index[i] + stridel[i];
break;
endif;
if temp_index[] + stride[] >= loop_count[] then
temp_index = zero;
done = 1;
endif;
endfor;
endif;
index = temp_index;
end;

When the data processing in the inner loop is completed, innerloop_end is as-
serted and a cascaded set of comparisons between index registers to their corresponding
loop bound values is activated. The flow of comparisons is directed from outermost to

their immediately innermost loops. If the index value is less than the loop bound for a
given loop 1, the index is incremented by a stride value, while all its outer loops are set
to the initial index values. After the first successful comparison, the cascaded structure
is prematurely exited in a form similar to the break statement of the C programming
language. Given that the cascaded comparisons fail, an index value which is lexico-
graphically larger or equal to Loop_count signifies the end of processing in the loop
nest.

3.3 IXGENR

The second form of the algorithm, named IXGENR, describes an HDL code generator
of an equivalent index generation unit. Its main difference lies in the fact that it uses
a priority encoded scheme that cannot be specified in a parameterized manner using
natural HDL semantics. The pseudocode semantics of algorithm IXGENR can be found
below.

Here, the temporary signals temp<n>_index and loop_count<n> are used
where n is the current loop enumeration. In the generated HDL code, these signals
are defined as aliased names of elements of the index and loop_count vectors,
respectively. It should be noted than all lines featuring a call to the PRINT () routine
illustrate emitted code.

local temp_index: temporary copy of index.

alias temp_index[i]: i-th segment of temp_index.
alias loop_count[i]: i-th segment of loop_count.
parameter NLP: number of supported loops.

begin

PRINT (if innerloop_end = 1 then);
for i in n downto 1 loop

then)

if 1 == n then
PRINT (if temp_index[i] + stride[i] < loop_count[i]
else
PRINT (elsif temp_index[i] + stride[i] < loop_count[i] then)
endif;
for j in n downto i+l loop
PRINT (temp_index[i] = zero;)
endfor;
PRINT (temp_index[i] = temp_index[i] + stride[i];)
endfor;

PRINT (else)
for i in 1 to NLP loop

PRINT (temp_index[1] = zero;)
endfor;
done = 1;

PRINT (endif)
PRINT (endif)
PRINT (endif)
PRINT (
end

index = temp_index;)

4. File listing

The LOOPGEN distribution includes the following files.

/loopgen Top-level directory

/bench/vhdl Benchmarks VHDL directory

loopgen_tb_tmpl.vhd Testbench template for the 1oopgen IP.

/doc Documentation directory

AUTHORS List of authors.

LICENSE End-user license agreement for using xmodz.

loopgen-if.png PNG image illustrating the 1oopgen IP I/O interface.

hwlu-arch.png Block diagram of the hwlu architecture.

loopgen-pb.pdf Product brief (brochure) for the LOOPGEN IP cores.

README This file.

README .html HTML version of README.

README .pdf PDF version of README.

VERSION Current version of the LOOPGEN IP cores.

/rtl/vhdl RTL source code directory for the IP core

add_dw.vhd Generic, 2’s complement binary adder.

cmpge.vhd Greater than-or-equal comparator.

hwlu.vhd Sample hw1lu architecture generated by the gen_hwlu
tool for NLP=3.

index_inc.vhd Index incrementer unit for the hwlu architecture.

ixgenb.vhd Behavioral implementation of loopgen as the
ixgenb architecture.

ixgenr.vhd Sample ixgenr architecture generated by the the
gen_ixgen tool for NLP=3.

prenc.vhd Priority encoder for the hw1lu architecture generated by
the gen_prenc tool for NLP=3.

reg_b.vhd Single-bit D-type register with load enable.

reg_dw.vhd Generic D-type register with load enable.

/sim/rtl_sim RTL simulation files directory

/sim/rtl_sim/bin RTL simulation scripts directory

hwlu.do do script for simulating the hwlu architecture with
Modelsim.

hwlu.mk GNU Makefile for simulating the hwlu architecture
with GHDL.

ixgenb.do do script for simulating the ixgenb architecture with
Modelsim.

ixgenb.mk GNU Makefile for simulating the i xgenb architecture
with GHDL.

ixgenr.do do script for simulating the ixgenr architecture with
Modelsim.

ixgenr.mk

GNU Makefile for simulating the i xgenr architecture
with GHDL.

/sim/rtl_sim/out

Dumps and other useful output from RTL simulation

hwlu_3_8.vcd

Sample waveform file (VCD format) generated from
simulating hwlu with NLP=3 and DW=8.

ixgenb_3_8.vcd

Sample waveform file (VCD format) generated from
simulating i xgenb with NLP=3 and DW=8.

ixgenr_3_8.vcd

Sample waveform file (VCD format) generated from
simulating i xgenr with NLP=3 and DW=8.

/sim/rtl_sim/run

Files for running RTL simulations

ghdl.sh
mti.sh
sim.sh

Bash script for running a single GHDL simulation.
Bash script for running a single Modelsim simulation.
Bash script for running multiple simulations of
loopgen architectures with either GHDL or Model-
sim.

/sim/rtl_sim/src

Various source files for running RTL simulations

chg-generics.pl

Perl script for producing versions of 1oopgen archi-
tectures with updated generic values.

/sw Software utilities

Makefile GNU Makefile for building all the executables.

common.c Functions commonly used by all HDL generators.

common.h Header file and API reference for common. c.

gen_hwlu.c Generator for the top-level design file of the hwlu ar-
chitecture.

gen_ixgen.c Generator for the 1xgenr architecture.

gen_prenc.c Generator for the priority encoder used by the hwlu ar-
chitecture.

/syn/xise Synthesis files for use with Xilinx ISE

/syn/xise/bin Synthesis scripts directory

xst.mk Standard Makefile for command-line usage of ISE.

/syn/rtl_sim/run

Files for running synthesis

syn.sh

Bash shell script for synthesizing 1oopgen architec-
tures with ISE.

5. Simulation

The LOOPGEN IP cores distribution supports both GHDL and Mentor Modelsim sim-

ulation.

In this section, it is assumed that the required software applications located in the
/ sw subdirectory have been already build (more on this in Section 7).

5.1. GHDL

For running the GHDL simulation, change directory to the /sim/rtl_sim/run
subdirectory:

$ cd S$LOOPGEN_HOME/sim/rtl_sim/run

assuming LOOPGEN_HOME is the directory where the top-level /loopgen is
found.

Then, the sim. sh shell script is executed, with appropriate command-line argu-
ments for e.g. the hwlu architecture:

$./sim.sh hwlu ghdl

The simulation produces a VCD (waveform) dump named hwlu.vcd (corre-
spondingly ixgenb.vcd or ixgenr.vcd for the other two architectural variants)
which is automatically copied to the /sim/rtl_sim/out subdirectory. In order
to distinguished between different values for generic parameters, the VCD files are
renamed to reflect the corresponding settings, e.g. hwlu_3_8.vcd for NLP=3 and
DW=8.

The ixgenb and i xgenr designs can be simulated in the same way, if you replace
appropriately hwlu in the instructions above.

5.2. Modelsim

For running the Modelsim simulation, e.g. for the hwlu case the corresponding shell
script is executed from the /sim/rt1_sim/run subdirectory:

$./sim.sh hwlu mti

As in the GHDL case, the VCD dump is produced.
Again, the ixgenb and ixgenr designs can be simulated in the same way, if you
replace appropriately hwlu in the aforementioned instructions.

5.3 Example operation

The operation of the core is rather simple. Input signal clk is the system clock for
the design. Input signal innerloop_end is the termination status flag from the
computation unit that performs the operations devoted to the inner loop.

The core performs one loop increment per cycle and when a final iteration for a
specific loop is reached, this loop as well as its inner loops are reset in the same cycle.

The operation of the core can be halted in case the signal innerloop_end is
deasserted. Then, the contents of the index registers of the hardware looping unit are
not changed and any activity beyond the comparator modules is ceased.

The following figure illustrates the timing diagram of a 1 oopgen unit, for Loop_bound
values equal to X"4", X"7", *'X"4" and stride values equal to X"3", X"1",
X" 2" for each loop (NLP=3, DW=4).

q

= 3uap
[0:TT]x=put

= [0:TT]=p1a3s

= [0:TT]aunca dooT

—pua dooT ISUUT
= jaga1

=X~
D

s|eufilg

Figure 3: Timing diagram from sample operation of the 1 copgen unit.

6. Synthesis

The LOOPGEN IP cores distribution includes scripts for logic synthesis automation
supporting Xilinx ISE. The corresponding synthesis script can be edited in order to
specify the following for adapting to the user’s setup:

e XDIR: the path to the /bin subdirectory of the Xilinx ISE/XST installation
where the xst . exe executable is placed

e arch: specific FPGA architecture (device family) to be used for synthesis

e part: specific FPGA part (device) to be used for synthesis

6.1. Running the synthesis script

For running the Xilinx ISE synthesis tool, change directory to the /syn/xise/run
subdirectory:

$ cd $XMODZ_HOME/syn/xise/run
and execute the corresponding script (for synthesizing hwlu):
$./syn.sh hwlu

The synthesis procedure invokes several Xilinx ISE command-line tools for logic
synthesis as described in the corresponding Makefile, found in the the /syn/xise/bin
subdirectory.

Typically, this process includes the following:

o Generation of the » . xst synthesis script file.

e Generation of the » . ngc gate-level netlist file in NGC format.

Building the corresponding * . ngd file.

Performing mapping using map which generates the corresponding * . ncd file.

Place-and-routing using par which updates the corresponding = . ncd file.

e Tracing critical paths using t rce for reoptimizing the » . ncd file.

Bitstream generation (» . bit) using bitgen, however with unused pins.

Finally, the hwlu.bit bitstream file is produced.

The same process can be applied for synthesizing the i xgenb and ixgenr de-
signs as well. Notably, i xgenb albeit written in behavioral VHDL is well-accepted
and supported for synthesis by the Xilinx XST/ISE logic synthesis tool.

7. Reference software application

Three C applications for generating architectures or components of LOOPGEN are lo-
cated in the / sw subdirectory:

e gen_prenc.c: a priority encoder generator for hwlu

10

e gen_hwlu. c: generator for the top-level design file of hwlu
e gen_ixgen.c: generator for the ixgenr architecture.

To build all executables, the supplied GNU Makefile can be used:
make clean ; make

All three generators have similar options; use —h as an argument to emit usage
information. For instance, in order to generate the ixgenr architecture, use the fol-
lowing, preassumably from within the sw subdirectory:

./gen_ixgen.exe -nlp 3 ixgenr

This prompt will generate a design file with the name ixgenr3.vhd that is an
index generator (looping unit) for three nested loops.

Again, the corresponding simulation script (sim. sh) automatically takes care of
generating the executables, running them to produce RTL design files, and execute all
the requested simulations.

8. Prerequisities

o Standard UNIX-based tools (tested with gcc-4.6.2 on MinGW/x86).

— make
— bash (shell)
— perl
For this reason, MinGW (http://www.mingw.org) or Cygwin (http://sources.redhat.

com/cygwin) are suggested, since POSIX emulation environments of sufficient
completeness.

e GHDL simulator (http://ghdl.free.fr) or Modelsim (http://www.model.com). The
latest GHDL distribution (0.29.1, Windows version) also installs GTKwave on
Windows.

o Xilinx ISE (free ISE webpack is available from the Xilinx website: http://www.
xilinx.com)

9. Contact

You may contact me at:

Nikolaos Kavvadias <nikos @nkavvadias.com>

http://www.nkavvadias.com
http://www.perfeda.gr

Perfeda Technologies headquarters
35100 Lamia, Fthiotis

11

http://www.mingw.org
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://ghdl.free.fr
http://www.model.com
http://www.xilinx.com
http://www.xilinx.com
mailto:nikos@nkavvadias.com
http://www.nkavvadias.com
http://www.perfeda.gr

Greece

12

	1. Introduction
	2. Functional description
	3. Architecture
	3.1 HWLU
	3.2 IXGENB
	3.3 IXGENR

	4. File listing
	5. Simulation
	5.1. GHDL
	5.2. Modelsim
	5.3 Example operation

	6. Synthesis
	6.1. Running the synthesis script

	7. Reference software application
	8. Prerequisities
	9. Contact

