
fxpemu user manual

Title fxpemu (Fixed-point emulation library for ANSI C)
Author Nikolaos Kavvadias (C) 2010, 2011, 2012, 2013, 2014
Contact nikos@nkavvadias.com
Website http://www.nkavvadias.com
Release Date 05 October 2014
Version 0.1.0
Rev. history
v0.1.0 2014-10-05

Updated for first public release on Github.
v0.0.4 2013-04-06

Standalone version.
v0.0.3 2011-04-27

Changes to fxp_to_int32. Added fxp_ceil.
v0.0.2 2010-11-24

Added fxp_to_double.
v0.0.1 2010-11-23

Added fxp, fxp_resize.
v0.0.0 2010-11-22

Initial version. Includes the definitions, declarations and im-
plementations of:

∙ BITASSIGN macro plus ABS, MAX, MIN, BITGET

∙ QuantizationType, OverflowType enums

∙ fixed struct

∙ fxp_quantize, fxp_overflow

∙ fxp_create, FIXED_INIT macro, INIT macro

∙ fxp_add, fxp_sub, fxp_mul, fxp_div, int32_to_fxp,
fxp_to_int32, fxp_neg, fxp_abs, fxp_min, fxp_max,
fxp_to_string, fxp_print, string_to_fxp, dou-
ble_to_fxp

1

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com


1. Introduction
fxpemu is an ANSI C library that implements basic fixed-point arithmetic data struc-
tures alongside a usable side. Its purpose is to be used in the context of software and
hardware compilers and code generators.

The implementation of the fixed struct, the "overflow" and "rounding" routines, and
the general form of fixed_xyz routines is based on the following reference:

Stephen A. Edwards,
"Using program specialization to speed SystemC fixed-point simulation,"

Proc. of the Workshop on Partial Evaluation and Program Manipulation (PEPM
2006), pp. 21-28, Charleston, South Carolina, USA, January 2006.

The draft of the reference paper is available (as of 2014-Sep-20) from:

∙ http://www.cs.columbia.edu/~sedwards/papers/edwards2006using.pdf

It should be noted that the additional functionality is based on newly-designed code.

2. File listing
The fxpemu abstract data types and API code base includes the following files:

/fxpemu Top-level directory
AUTHORS List of authors.
LICENSE License argeement (Modified BSD license).
Makefile GNU Makefile for building test-fxpemu.exe.
README.rst This file.
README.html HTML version of README.
README.pdf PDF version of README.
VERSION Current version.
fxpemu.c C code implementing the fixed-point arithmetic API.
fxpemu.h C header file for the above. Also defines data structures

along some arithmetic macros needed.
rst2docs.sh Bash script for generating the HTML and PDF versions.
test-fxpemu.c Application code for exercising basic functionality of

the implemented fixed-point arithmetic API.

3. Function reference
This section provides a quick reference of the functions used for implementing the
fxpemu data structures (enums, structs and basic macros) and API.

2

http://www.cs.columbia.edu/~sedwards/papers/edwards2006using.pdf


3.1 Data structures
3.1.1 QuantizationType enum

This enum provides definitions for the possible quantization (truncation or rounding)
modes in fixed-point arithmetic. It is defined as follows:

typedef enum {
UNKNOWN_QUANT_TYPE = -1,
AC_TRN, /* Default in ACDT (Algorithmic C Datatypes). */
AC_TRN_ZERO,
AC_RND, /* Default in VHDL fixed-point package. */
AC_RND_ZERO,
AC_RND_INF, /* Implemented as "SC_RND" in SystemC 2005. */
AC_RND_MIN_INF,

AC_RND_CONV
} QuantizationType;

3.1.2 OverflowType enum

This enum provides definitions for the possible overflow-handling (wrapping or satu-
ration) modes in fixed-point arithmetic. It is defined as follows:

typedef enum {
UNKNOWN_OVERFLOW_TYPE = -1,
AC_WRAP, /* Default in ACDT (Algorithmic C Datatypes). */
AC_SAT, /* Default in VHDL fixed-point package. */
AC_SAT_ZERO,
AC_SAT_SYM

} OverflowType;

3.1.3 fixed struct

This struct defines the fixed data structure which essentially is the container of a
fixed-point value. It consists of the val‘ (value), ‘‘wl (word length), iwl (in-
teger word length), lbp (location of binary point), and the overflow and rounding
flags. The fixed struct is defined as follows:

typedef struct {
int val; /* 32-bit value value of the number */
int wl; /* Word length, in bits */
int iwl; /* Integer word length, in bits */
int lbp; /* Location of binary point, in bits */
int overflow;
int rounding;

} _fixed;
typedef _fixed fixed;

3.1.4 FIXED_INIT macro

The FIXED_INIT macro initializes a fixed-point variable x to a set of given values:
w, i, l, ovr, rnd according to the definition of the fixed struct. It is defined
as follows:

3



#define FIXED_INIT(x, w, i, l, ovr, rnd) \
x.wl = w; \
x.iwl = i; \
x.lbp = l; \
x.overflow = ovr; \
x.rounding = rnd

3.2 API
3.2.1 fxp_quantize

void fxp_quantize(fixed *r);

Apply fixed-point arithmetic quantization rules to fixed r. These rules are used for
handling the low-significance bits of r.

3.2.2 fxp_overflow

void fxp_overflow(fixed *r);

Apply fixed-point arithmetic overflow rules to fixed r. These rules are used for
handling the high-significance bits of r.

3.2.3 fxp_create

fxp_create(int val, int iwl, int fwl,

“ OverflowType ovr_mode, QuantizationType rnd_mode,“
“ int offset);“

Constructor for a signed fixed-point variable.

3.2.4 fxp

fixed fxp(int value, int left, int right, char is_signed,
char rounding);

Constructor for a signed fixed-point variable. This version is provided for compat-
ibility to a third-party tool/plugin, namely the Agility RMS.

This constructor cannot set the overflow mode. The overflow mode of AC_SAT is
used by default, and can be changed by explicit modification of the "overflow" field of
a fixed-point variable. An "offset" (for establishing.

"is_signed" is currently left unused.

3.2.5 fxp_resize

void fxp_resize(fixed *r, int L, int R, char sign);

Extends or shrinks the number of bits left or right of the binary of a specified
"fixed" arithmetic type. This version uses an additional specifier, "sign" which can
take the values of ’u’ or ’s’. For proper use, the specified sign must be the same to that
supposed for fixed r.

4



The location of the binary-point (LBP(.)) is not affected.

3.2.6 fxp_add

void fxp_add(fixed *r, fixed *a, fixed *b);

Fixed-point addition.

3.2.7 fxp_sub

void fxp_sub(fixed *r, fixed *a, fixed *b);

Fixed-point subtraction.

3.2.8 fxp_mul

void fxp_mul(fixed *r, fixed *a, fixed *b);

Fixed-point multiplication.

3.2.9 fxp_div

void fxp_div(fixed *r, fixed *a, fixed *b);

Fixed-point division.

3.2.10 int32_to_fxp

fixed int32_to_fxp(int a, int w, int i, int lbp, int ovr,
int rnd);

Convert a signed int to a fixed-point value.

3.2.11 fxp_to_int32

int fxp_to_int32(fixed *a);

Convert a fixed-point value to a signed int.

3.2.12 fxp_neg

void fxp_neg(fixed *r, fixed *a);

Fixed-point negation.

3.2.13 fxp_abs

void fxp_abs(fixed *r, fixed *a);

Fixed-point absolute value.

5



3.2.14 fxp_min

void fxp_min(fixed *r, fixed *a, fixed *b);

Fixed-point minimum of two numbers.

3.2.15 fxp_max

void fxp_max(fixed *r, fixed *a, fixed *b);

Fixed-point maximum of two numbers.

3.2.16 fxp_to_string

void fxp_to_string(fixed *a, int b, char *s);

Converts a fixed-point number of the form i.f to a string, assuming arithmetic in
base b.

3.2.17 fxp_print

void fxp_print(fixed *a, int b);

Prints the argument as a fixed point i.f number in base b.

3.2.18 string_to_fxp

void string_to_fxp(char *s, int b, fixed *r);

Reads a string representing a b-base (b=2 for binary) fixed-point number and per-
forms the conversion to an actual "fixed"-type number.

3.2.19 double_to_fxp

void double_to_fxp(double d, fixed *a);

Converts a double (64-bit floating-point) to a binary fixed-point number with pos-
sible loss of precision.

3.2.20 fxp_to_double

double fxp_to_double(fixed *a);

Converts a binary fixed-point number (actually its integer emulation) to the corre-
sponding double (64-bit floating-point) representation.

3.2.21 fxp_ceil

void fxp_ceil(fixed *r, fixed *a);

Fixed-point ceiling (rounding to positive infinity).

6



4. Usage
The implementation of the fixed-point arithmetic API can be used in context of a pro-
vided test application, named test-fxpemu.c. The Makefile can be used for build-
ing this application as follows:

$ cd fxpemu

$ make clean ; make

This will also build the static library implementation of fxpemu, which is the
libfxpemu.a file. Third-party/user applications can be implemented by including
the fxpemu.h header file and statically linking to the library.

To run the test application do the following:

$ ./test-fxpemu.exe

Executing the application will produce a stream of diagnostic messages to standard
output.

5. Prerequisites
∙ Standard UNIX-based tools (tested with gcc-4.6.2 on MinGW/x86 and gcc-4.8.2

on Cygwin/x86/Windows 7)

– make

On Windows (e.g. Windows 7, 64-bit), MinGW (http://www.mingw.org) or Cyg-
win (http://sources.redhat.com/cygwin) are suggested.

The sources should be able to compile without any messages on any recent Linux
distribution.

7

http://www.mingw.org
http://sources.redhat.com/cygwin

