dlx user manual

.dlx

Title dix (DLX functional model for ArchC)
Author Nikolaos Kavvadias 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014
Contact nikos @nkavvadias.com
Website http://www.nkavvadias.com
Release Date 02 December 2014
Version 0.1.3
Rev. history
v0.1.3 2014-12-02
Added project logo in README.
v0.1.2 2014-10-23
Documentation corrections.
v0.1.1 2014-10-23
o Fixed wrong reference to memory MEM (correct is DM.
e The simulator binary (d1x.x) is now correctly gen-
erated.
v0.1.0 2014-10-22

e Updated documentation as README.rst.

Changed func from 0x06 to 0x09 for multu.

Removed sequ, sneu.

Changed func for div (0x19) and divu (0x1A).

Newly added files: defines_gdb, modifiers.

Updated d1x_opcode_map.x1ls.

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com

v0.0.4

2006-

11-15

Added pcount instruction for basic-block profiling.

v0.0.3

2006-07-01

Corrected optimization instruction methods for 7,
jal, jr, jalr, beqgz, bnez.

Alternate behaviors for div, divu added.
Fixed copyright notations to manually-written files:

(x.ac, dlx-isa.cpp, dlx_syscall.cpp,
dlx_gdb_funcs.cpp).

Behaviors for addui, subui have been corrected.

v0.0.2

2006-01-01

Changed behavior of j, jal, beqgz, bnez according
to what is expected by the binutils DLX port.

Fixed issue with jr instruction.
New encoding for the halt instruction.

Changed register notation to comply to DLX
conventions: (rO-r31) and alternate notation:
(zero,at,v0-vl,a0-a3,t0-t9,s0-s7,
k0-k1,9p, sp, fp, ra)

Both prefixed (by a dollar sign) and unprefixed sym-
bolic register names should be accepted.

Disabled non-standard DLX instructions, along with
mvts, mvfs.

The standard mult, multu, div, divu opcodes are
now used.

Testsuite directory removed. The acstone bench-
marks should be used instead for the purpose of
benchmarking the DLX model.

v0.0.1 2005-12-26
e First public version.

e Most integer instruction set functionality has been
added.

e Very few applications have been tested:

1. fib.s (generated by
dlxgcc-2.7.2.3 and slightly modi-
fied)

2. loadi.s (tests load immediate pseudo-
instructions)

1. Introduction

This is the DLX ArchC (http://www.archc.org) functional model. This model has the
system call emulation functions implemented, so it is a good idea to turn on the ABI

option.

2. File listing

The d1x distribution includes the following files:

/dlx Top-level directory

AUTHORS List of d1x authors.

LICENSE The modified BSD license governs d1x.
README .html HTML version of README.
README.pdf PDF version of README.

README.rst This file.

VERSION Current version of the project sources.
bp_conf.ac Branch predictor description (only for archc-1.5.1.bp2).
defines_gdb Macro definitions for GDB integration.
dlx.ac Register, memory and cache model for d1x.
dlx.png PNG image for the d1x project logo.

dix_gdb_funcs.cpp

GDB support for the DLX simulator.

dIx_isa.ac

Instruction encodings and assembly formats.

dlx_opcode_map.vsd

Incomplete MS Visio drawing of the DLX opcode map.

dlx_opcode_map.xls

Excel spreadsheet containing the DLX opcode map.

dlx_syscall.cpp

OS call emulation support for DLX.

dix_isa.cpp

Instruction behaviors.

modifiers

Instruction encoding and decoding modifiers.

http://www.archc.org

rst2docs.sh Bash script for generating the HTML and PDF versions
of the documentation (README).

3. Usage

To generate the interpreted simulator, the acsim executable is ran:

$ acsim dlx.ac [-g —-abi -gdb] # (create the simulator)
$ make —-f Makefile.archc # (compile)
$./dlx.x —--load=<file-path> [args] # (run an application)

To generate the compiled application simulator, the accsim executable is ran:

$ accsim dlx.ac <file-path> # (create specialized simulator)
$ make —-f Makefile.archc # (compile)
$./dlx.x [args] # (run the application)

The [args] are optional arguments for the application.
There are two formats recognized for application <file-path>:

e ELF binary matching ArchC specifications
e hexadecimal text file for ArchC

In order to generate the binary utilities port (binutils port), the acbingen. sh
driver script must be used. This should be called as follows:

$ acbingen.sh -adlx —-i‘pwd‘/../dlx-tools/ dlx.ac
for generating the binutils port executables. This includes the following tools:
e addr2line
e ar
® as
e c+t+filt
e gdb (the GDB port is also generated in the same directory)
e gdbtui
e 1d
e nm
e objcopy
e objdump
e ranlib

e readelf

4.

1i
1i

e size
e strings

e strip

General observations

1. Some non-classical DLX instructions (available in the DLX binutils target)
might be added in the future. These are:

e bswap (BSWAPF) --> A byte swap instruction

e ldstbu (LSBUOQOP) --> Atomic load-store byte unsigned

e ldsthu (LSHUOP) --> Atomic load-store halfword unsigned
e 1dstw (LSWOP) --> Atomic load-store word

2. mult, multu, div, divu instructions have different opcodes to the
binutils DLX. Also, div, divu produce a single 32-bit result (the quo-
tient). Probably, rem, remu instructions will be added to produce the
remainder of a division. For 64-bit result multiplication maybe a good
choice is to provide multl, multlu primitives, for which results are
written in two consecutive registers (integer registers).

3. There are no HI /LO registers (I think this is the actual intent in the Patter-
son book).

4. Multiplication and division DONNOT use the floating-point register file.
For this reason, mvt s, mv£fs instructions are currently unimplemented.

5. Loading 32-bit constants will be available via appropriate pseudo- instruc-
tions not requiring the HI /LO registers, and for the following formats:

%$dest, #hi-l1l6bit-constant, #lo-1l6bit-constant
$dest, #32bit-constant

6. For future provision of a coprocessor (maybe this is an overkill for the
DLX?) some opcodes MIGHT be moved, e.g.:

e Move opcode(J)=0x02, opcode(JAL)=0x03 to e.g. 0x06,0x07, re-
spectively. (PREFERRED)
e Move opcode(BEQZ), opcode(BNEZ) to 0x16, 0x17.

o Then the 0x01-0x04 primary opcodes would be used for 4 optional
COPIoCessors.

