
bbpart user manual

Title bbpart (CDFG extraction MachSUIF pass)
Author Nikolaos Kavvadias 2004, 2005, 2006, 2007, 2008, 2009

2010, 2011, 2012, 2013, 2014
Contact nikos@nkavvadias.com
Website http://www.nkavvadias.com
Release Date 23 September 2014
Version 1.1.2
Rev. history
v1.1.2 2014-09-23

Updated header comments in all source files. Added File
Listing section in README; added AUTHORS.

v1.1.1 2014-08-12
Added VCG file generation for each procedure (was re-
moved following version v1.0.1). Added LICENSE (modi-
fied BSD licensing scheme).

v1.1.0 2014-02-24
Changed documentation format to RestructuredText. Added
ChangeLog in separate file.

v1.0.9 2006-12-01
Emitter improvements.

v1.0.8 2006-11-29
Option for enabling the marking of "false" dependencies.
Not to be used for CFG/SSA SUIFvm.

v1.0.7 2006-09-16
Support for operand data type information.

v1.0.6 2006-09-15
Cumulative update. Several things fixed. ARM target sup-
port temporarily removed.

v1.0.1 2004-10-05
Minor additions to README.

v1.0.0 2004-07-17
Initial release.

1

mailto:nikos@nkavvadias.com
http://www.nkavvadias.com


1. Introduction
bbpart is an analysis pass built to be used with the SUIF2/MachSUIF2 compiler
infrastructure. This pass generates a graphical representation for the data dependence
graphs (which come in the form of DAGs) of the basic blocks found in a given ANSI
C source file.

The DAG for each basic block is depicted in the VCG (Visualization and Compiler
Graph) format. A link to VCG can be found here: http://rw4.cs.uni-sb.de/~sander/
html/gsvcg1.html

A naming convention has been adopted for each generated file as seen below:

<procedure name>_<basic block number>.vcg

where <procedure name> is a C procedure, <basic block number> enu-
merates the basic blocks in the procedure starting from zero, and vcg is the default
extension for VCG files.

This pass works for the SUIF virtual machine instruction set (SUIFvm) and for its
most common 2 or 3 addressing modes. A more general version of bbpart applicable
to all SUIFvm addressing modes will eventually be released in the not so distant future.
Currently, a new internal version of bbpart is being developed which is more elegant
than the current bbpart since it uses the map_opnds API function of MachSUIF.
The problem is that it is not very stable, and programs hang right after results have
been produced for only a few basic blocks in the program. I believe this is due to a
de-efficiency of the MachSUIF API.

If nothing is changed in the default do_lower pass of Machine SUIF (dismantling
to simpler objects of several IR objects present in the corresponding SUIF2 representa-
tion), bbpart should not experience any problems with portable C application codes.

The bbpart pass has been tested with MachSUIF 2.02.07.15.

2. File listing
The bbpart distribution includes the following files:

/bbpart Top-level directory
AUTHORS List of bbpart authors.
LICENSE The modified BSD license governs bbpart.
README.rst This file.
README.html HTML version of README.
README.pdf PDF version of README.
VERSION Current version of the project sources.
bbpart.cpp Implementation of the bbpart analysis pass.
bbpart.h C++ header file containing declarations and prototypes

for the above.
rst2docs.sh Bash script for generating the HTML and PDF versions

of the documentation (README).
suif_main.cpp Entry point for building the standalone program

do_bbpart that implements the pass.

2

http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.html
http://rw4.cs.uni-sb.de/~sander/html/gsvcg1.html


suif_pass.cpp Define the SUIF pass built as the dynamically loadable
library libbbpart.so.

suif_main.h C++ header file for the above.
utils.h C header file with implementations of auxiliary func-

tions.

3. Installation
Unpack the bbpart archive wherever you like, e.g. in $MACHSUIFHOME/cfg/bbpart.
You don’t need to modify anything in the Makefile, if you have a working MachSUIF
2 installation.

The program binary (do_bbpart) will be installed at $NCIHOME/bin and the
shared library (libbbpart.so) at $NCIHOME/solib, where NCIHOME is the
SUIF 2 top-level directory.

4. Usage details
The pass accepts an input file in CFG form to operate. You don’t have to define any
output files since their naming convention has been hardwired.

As said above, the bbpart pass is applied on the CFG representation of the input
program. Which means that you have to run a sequence of transformation passes on
the C program. These correspond to transformation and optimization phases of the
modular SUIF/MachSUIF compiler. You can prepare something like the following
script (it is just a minimalistic script to get you working), that can be run e.g. from
csh:

c2s $1.c $1.suif
do_lower $1.suif $1.lsf
do_s2m $1.lsf $1.svm
do_il2cfg -break_at_call $1.svm $1.afg
do_bbpart $1.afg
echo "Done with $1"

Then if this is called run_bbpart you can run it on filename.c as follows:

$ ./run_bbpart filename

For the C program test.c containing a main procedure with 5 basic blocks and
an abs procedure with 3 basic blocks the following files will be generated:

abs_0.vcg
abs_1.vcg
abs_2.vcg
main_0.vcg
main_1.vcg
main_2.vcg
main_3.vcg
main_4.vcg

3



Usage synopsys:

“ do_bbpart [options] test.afg“

where options can be one or more of the following:

-dt enable the production of operand data type information. The following data types
are supported: {v0, u8, u16, u32, u64, s8, s16, s32, s64, f32, f64, f128, p32,
p64}.

-mark_false_deps enable the marking of "false" operand dependencies. This option
should not be used for CFG/SSA SUIFvm.

-global_symbol_table generation of global symbol table entries.

5. Notes
If you use bbpart in any publication, please give a reference to the following paper:

Nikolaos Kavvadias and Spiridon Nikolaidis, "Application Analysis with Integrated
Identification of Complex Instructions for Configurable Processors," Proc. of the 14th
Intl. Workshop on Power and Timing Modeling, Optimization and Simulation, pp.
633-642, September 15-17, 2004, Santorini, Greece.

This paper discusses a prototype application analysis flow with MachSUIF where
bbpart is used as a CDFG extractor.

4


